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ABSTRACT

This study investigates the influence of a curvilinear fiber format on load car-

tying capacity of a layered fiber-reinforced plate with a centrally located hole.

A curvilinear fiber format is descriptive of layers in a laminate having fibers

which are aligned with the principal stress directions in those layers. Lami-

nates of five curvilinear fiber format designs and four straightline fiber format

designs are considered. A quasi-isotropic laminate having a straightline fiber

format is used to define a baseline design for comparison with the other lami-

nate designs. Four different plate geometries are considered and differen-

tiated by two values of hole diameter/plate width equal to 1/6 and 1/3, and two

values of plate length/plate width equal to 2 and 1. With the plates under

uniaxial tensile loading on two opposing edges, alignment of fibers in the

curvilinear layers with the principal stress directions is determined analytically

by an iteration procedure. In-plane tensile load capacity is computed for all

of the laminate designs using a finite element analysis method. A maximum

strain failure criterion and the Tsai-Wu failure criterion are applied to deter-

mine failure loads and failure modes. Resistance to buckling of the laminate

designs to uniaxial compressive loading is analyzed using the commercial

code Engineering Analysis Language. Results indicate that the curvilinear fi-

ber format laminates have higher in-plane tensile load capacity and compara-

ble buckling resistance relative to the straightline fiber format laminates.
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CHAPTER I

INTRODUCTION

Advanced fiber-reinforced

troduced roughly two decades

composite materials were in-

ago as a high performance

structural material with enormous possibilities for increas-

ing structural efficiency. Initial research on composite

materials centered on producing the material at a reasonable

cost and fabricating simple structural shapes from the ma-

terials. Additional research was also conducted with regard

to analyzing and predicting how those simple structural

shapes would respond to loads.

The next area of research focused on the complex and

sometimes unpredictable failure mechanisms of composite ma-

terials. Many variables affect the structural response of

composite materials, and since the behavior of metals had

been well studied, many fiber-reinforced components were de-

signed to behave somewhat like metals. This approach was

acceptable because fabrication of the components was of

major concern. The metal-like construction of composites

was accepted because the lower density of composite mater-

ials produced a weight savings in the components. However,

use of composite materials in this manner did not take ad-

vantage of the major attributes of composite materials which

allow for tailoring the composite material to fit the appli-

cation. The strength and stiffness of a composite material

can be aligned in directions which correspond to the loads
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applied to a structural component.

Military aircraft and both military and civilian space-

craft have been designed and used successfully with advanced

fiber-reinforced composite materials as part of the overall

design. Fiber-reinforced composite materials are now being

studied for use in business aircraft, and to some extent,

commercial aircraft. Even though composite materials have

seen increased usage, the potential advantages of advanced

fiber-reinforced composite materials have not been fully

realized, or even investigated. The development and use of

composite materials in structures has followed a conserva-

tive approach. This conservative approach has resulted in

some of the detrimental characteristics of composites erod-

ing some of its advantages. As a result, in many cases only

a marginal gain in efficiency is realized when a composite

material is used instead of a metal. For example, a quasi-

isotropic laminate has stiffness characteristics which are

similar to aluminum and has similar in-plane load capacity.

However, unlike aluminum, a quasi-isotropic laminate may

delaminate, while aluminum does not have that problem. A

quasi-isotropic laminate is susceptible to environmental

degradation, while aluminum has less of a problem with this.

The manufacture and repair of composite materials is less

fully understood than the

num. The addition of more

manufacture and repair of alumi-

weight to a composite structure

might alleviate these problems, but then the advantages of

%

_=

=

!

l
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using composite materials begin to decrease.

structural efficiency have been moderate while

gains could be far greater.

efficiency by a factor of 2

utilization of a composite

Gains made in

it seems the

To make gains in structural

or 3, the overly conservative

material must be disgarded and

more innovative approaches must be developed. This parti-

cular study examines one aeparture from the conservative use

of composite materials and develops an approach which may

lead to step increases in structural performance.

Conventional design philosophies for fiber-reinforced

composite structures are based on the idea of using multiple

layers of fibers embedded in a matrix, the fibers in each

layer being straight and parallel to each other, and aligned

in a particular direction. Though each layer may have its

own unique fiber orientation, the idea of allowing the fiber

orientation within a layer to vary from point to point has

not been considered seriously. The specific issue in this

study is to use fiber reinforcement in such a way that the

direction of the fibers, or at least some of the fibers, is

a function of spatial position in the structure. This will

be referred to herein as a curvilinear fiber format. The

curvilinear format has the following advantage: A structur-

al component may contain a geometric discontinuity, such as

a hole, which interrupts fiber continuity in all of the lay-

ers and causes a concentration and realignment of stress.

If the fibers are straight and parallel to each other, a

3



large number of fibers must be broken at this geometric dis-

continuity. The efficient way to use the fibers would be

not to break the fiber continuity and thus use the fibers to

greater advantage near the geometric discontinuty. The

fibers should "flow" continuously around the discontinuity

and be oriented in such a manner as to transmit the load

efficiently around the d'iscontinuity. Many issues must be

studied to make this idea viable, the most important issue

being fabrication. However, the availability of raw fiber,

the increased power and flexibility of robotics, and new

matrix development do provide promise for fabrication of

components on a fiber-by-fiber

than a straightline format.-

In considering the issue

basis with something other

involved, this study focuses

on the application of the concept to a particular problem.

The particular problem studied here is a prime candidate for

deviating from the straightline fiber format. The particu-

lar problem is a thin plate which contains a centrally lo-

cated circular hole and is loaded uniaxially in its plane.

The problem has been studied hundreds of times in the con-

text of using isotropic and composite materials. However,

it is an important problem. Aircraft structures contain

many holes for access and fabrication, and commercial air

transports contain numerous windows. The central question

is: If the fibers are not to be used in a straightline

fiber format, how should the orientation of the fibers vary

4



from point to point? The basic philosophy used here to de-

sign the plate will be to align the fibers with the princi-

pal stress directions. More specifically, in those layers

which are allowed to have variable fiber orientation, the

fibers will be aligned with the principal stress directions

in those layers. The method focuses on the use of an itera-

tion scheme to align the fibers with the principal stress

directions. Several different stacking sequences of layers

and four different geometries are considered to see how the

curvilinear fiber format will compare with the straightline

fiber format. The maximum strain and Tsai-Wu failure cri-

teria are used to determine the comparative strengths and

weaknesses of the various designs. Finally, the buckling

strengths of the curvilinear designs are computed to deter-

mine if the curvilinear designs alter buckling strength.

The next chapter begins to address these issues by pre-

senting a brief overview of classical laminated plate

theory, casting these results within the framework of varia-

tional methods, and deriving the governing nonlinear partial

differential equations and associated boundary conditions.

Chapter III presents the specific plate geometries to be

studied, and presents the governing equations developed in

Chapter II in the context of those plates subjected to in-

plane uniaxial

nature of the

equations with

tensile loading. The equations, by the

problem, are linear partial differential

coefficients that are a function of the spa-



tial coordinates. The material properties vary from point

to point and these material properties modify the differen-

tial equations. Because of the variable coefficients, an

approximate numerical scheme is necessary to obtain numbers.

Here the finite element method is used, and details of the

particular finite element used are presented in Chapter III.

Since the finite element" method is well known, the discus-

sion of the finite element approach is brief. The boundary

conditions used in the tensile load analysis and the use of

a one-quarter plate analysis are also discussed. Most

importantly, the iteration scheme used to align the fiber

directions with the principal stress directions is discuss-

ed. Finally, Chapter III includes an overview and discus-

sion of the failure thoories used.

Chapter IV focuses on the buckling analysis. The

method of adjacent equilibrium is used to derive the equa-

tions which govern buckling. The buckling equations are

based on the equations derived in Chapter II. Again these

equations are partial differential equations with variable

coefficients and solutions are obtained using the finite

element method. Since this particular finite element analy-

sis is based on use of the commercial code Engineering Anal-

ysis Language (EAL), the discussion centers on the charac-

teristics of the element used. The boundary conditions used

in the buckling analysis are presented along with reasons

for analyzing the entire plate instead of only one-quarter



of the plate•

Chapter V presents the results for the tensile load

problem. The failure loads and failure modes for 36 diff-

erent plate designs are presented. Since the point of the

work is improved performance with the curvilinear designs,

gains in using this design are discussed in some detail.

Through the use of contour plots, the basis for the improve-

ment in terms of the redistribution of stress is discussed.

Convergence and accuracy of the stress analysis for the lam-

inates with the curvilinear layers is also addressed in

Chapter V.

Chapter VI centers on the buckling resistance of the 36

different plate designs. As mentioned before, the purpose

of the buckling analysis was not to design for improved

buckling. Rather the buckling analysis was conducted to de-

termine the influence of the curvilinear fiber format on the

buckling capacity.

Finally, the last chapter, Chapter VII, includes a sum-

mary of the findings, discusses the limitations of the re-

sults, and makes recommendations for future research.



CHAPTER II

DERIVATION OF EQUATIONS GOVERNING

GENERALLY ORTHOTROPIC

THIN LAMINATED PLATES

General Considerations

Consider a thin laminated fiber-reinforced plate as

shown in Figure 2.1. The x-y coordinate plane corresponds

to the middle surface of the plate. The z-axis is perpen-

dicular to the middle surface and z is measured relative to

the middle surface. The total thickness of the plate is

denoted by H.

The plate studied here is governed by the following set

of assumptions based on classical thin-plate theory.

(I) The thickness of the plate is uniform and small compar-

ed to the other dimensions of the plate.

(2) The Kirchhoff hypothesis is assumed to be valid. The

hypothesis states that at any point on the middle surface,

line elements normal to the undeformed middle surface remain

straight, normal to the surface, and do not extend or con-

tract during the deformation of the plate. As a result, the

transverse shear strain components are exactly zero. This

is illustrated in Figure 2.2 where the orthogonality of the

line element relative to the middle surface is shown.

(3) The strains are small compared to unity and the rota-

tions about the x-axis and the y-axis are moderately small.
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The strains are smaller than the rotations. The rotations

about the z-axis are negligibly small. Essentially it is

assumed that the yon Karman thin-plate theory is valid for

this problem, specifically the buckling problem.

Z

Z

[_ _ ' IL Middle Surface

Figure 2.1 Thin Plate
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y - Direction
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x - Direction

After Deformation

Before Deformation
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Surface Element

Figure 2.2 Kirchhoff Assumption
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(4) The plate is constructed of multiple layers of fiber-

reinforced material, each layer being bonded perfectly to

tho adjacent layer. Each layer is of thickness h and has

its own fiber orientation.

(5) The plate is in a state of plane stress, i.e., at every

point in the plate, _ =z Txz

(6) The stiffness prdperties

thickness of each layer, but the

of locations x and y in each layer.

have different stiffness properties.

= Ty z = O.

are uniform throughout the

properties are a function

(7)

(8)

(9)

Each layer can also

Each layer exhibits linear elastic behavior.

The material in each layer is orthotropic.

There are no body forces acting in the plate.

Detailed Considerations For Layered Fiber-Reinforced Plates

In terms of plate displacements, the

tion can be written as:

u(x,y,z) = u0(x,y) - z (w0(x,y)),x (2.1a)

v(x,y,z) = v0(x,y) - z (w0(x,y)),y (2.1b)

w(x,y,z) = wO(x,y) (2.1c)

where u, v, and

the plate, and u0,

the middle surface of the plate. The quantity w0 is the
,X

rotation of the normal to the middle surface about the y-

axis, as illustrated in Figure 2.2, and the quantity w0 is
,y

the rotation of the normal to the middle surface about the

Kirchhoff assump-

w denote the displacements at any point in

v0, and w0 denote the displacements of

Ii



x-axis, also illustrated in Figure 2.2.

The strain-displacement relations, including

effects of moderate rotations about the x and y axes are:

the

E z (x,y,z) : (u(x,y,z)),, + _[(w(x,y,z)) .]2 (2.2a)

Ey (x,y,z) : (v(x,y,z)),y + _[(w(x,y,z)) y]z (2.2b)

F.7(x,y,z) : (u(x,_,z)) y + (v(x,y,z)) .

where E., Ey, Fxy

+ [ (w(x,Y,Z)) xCw(x,y,z)) y] (2.2c)

are the strains at any point in the plate.

Substituting the Kirchhoff displacements into the strain-

displacement relations results in:

E, : uO - z wO + _ [wO x]2 (2 3a)_X ,XX , "

Ey : vO - z wO + _ [wO ]z (2 3b),Y ,YY ,Y •

F. : uO + vO - 2 z w0 + wO wO (2 3c)
y ,y ,x ,xy ,x ,y "

Written in more Compact notation:

E, (x y z) = EO (x y) + z Ko (x y) (2 4a)

ey (x,y,z) =

F.y(x,y,z) =

where the strains

60 (x y) + z KO (x,y) (2 4b)
Y ' Y "

F0xy(X,y) + Z K°xy(x' y) (2.4c)

6 0 of the middle surface of the plate

are:

EO : U 0

EO : V 0
Y ,Y

['0 : U 0
xy ,y

and the curvatures

+ _ [wo]2

+ _ [wo, y]z

+ V 0 + wO x WO
,X , ,y

Ko of the middle surface

(2.5a)

(2.5b)

(2.5c)

of the plate

are:

EO : - W 0
x _xx

(2.6a)

12



Ko = - wO (2 6b)
y ,yy

KO = - 2 wO (2 6c)xy ,xy

A single layer within the plate is often referred to as

a lamina. A lamina consists of many thousands of strong and

stiff fibers embedded in a softer and weaker material. This

second material is referred to as a matrix. The fibers

carry most of the load while the matrix material transfers

the load between the fibers and holds the fibers together.

A laminate is a group of laminae or layers that, as stated

before, are bonded perfectly together. The planes of the

laminae are parallel to each other. This is shown in Figure

2.3.

laminae are

lamina can have

direction.

Because each

In Figure 2.3 the fiber

illustrated, and

its fibers oriented

directions of the various

also as stated before, each

in an arbitrary

layer can have its own fiber orientation,

it is convenient to use a global or laminate coordinate

system for the analysis. The global system is referred to

here as the x-y-z coordinate system while the lamina system

is denoted as the 1-2-3 coordinate system. The relationship

between the 1-2-3 lamina coordinate system and the x-y-z

laminate coordinate system is shown in Figure 2.4. The

1-axis corresponds to the fiber direction. The angle 8

defines the orientation of the 1-axis with respect to the

x-axis.

One of the most important aspects of laminated fiber-

13
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L OOOoooo[

_r

I o o lo'o o o o[_o = _ _ ....

F Laminate

 ooooo [:__-oo°2__ -oOooooo_o
0 0 0 0 0 0 0 = = "_= °"_

i_ 0 0 0 0 0 0 O-

-Fibers

L

I o o o o o o o[ ___

Figure 2.3
Lamina and Laminate
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+ 8 : Positive Rotation Of Coordinate Axes

Figure 2-.4

Relationship Between 1-2-3 Lamina Coordinate

System and x-y-z Laminate Coordinate System
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elastic behavior.

stresses acting on

coordinate system,

reinforced composite plates, and one which distinguishes

them from traditional isotropic plates, is the stress-strain

behavior. As mentioned on page ii, it is assumed that the

material in each layer is orthotropic and exhibits linear

Referring to Figure 2.5, which shows the

an elemental unit cube in the 1-2-3

the gtress-strain behavior of an ortho-

tropic material in the 1-2-3 coordinate system is given by:

O' 2

O"3

T23

T31

T12

C11 CIz C,3 0 0 0

CIz C2z C23 0 0 0

C,3 Cz3 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 Cs5 0

0 0 0 0 0 CsB

E l

E z

E s

['23

F31

F12

(2,7)

where the C "s are the stiffness coefficients of the mater-

ial .

The stress-strain relations of Eqn. 2.7 reduce to the

following form for an orthotropic lamina in a state of plane

stress.

a 1

_2

T12
Q11 Q1z

Q12 Qz2

0 0

The Q" s

E
I

6 2

0

0

Q68

reduced

['12

(2.8)

are the stiffnesses in the i-2

coordinate system. The Q's can be defined in terms of the
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Stresses Acting On An Elemental Unit Cube
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engineering constants E, , E2 ' _Iz ' _21 , and GIz as:

Z I

QII = (2.9a)

E 2

Q22 = (2.9c)

Q6e = G12 (2.9d)

To completely describe the response of an orthotropic

material in a state of plane stress, four independent mater-

ial properties are required These material properties are

the elastic modulus in the fiber direction E I , the elastic

modulus perpendicular to the fibers and in the plane of the

of the lamina E 2 , the in-plane shear modulus Gt2 , and

Poisson's ratio _i2" The Poisson's ratio _z, can be de-

termined from the following reciprocal relation:

El E 2

In general, Poisson's ratio

in the j-direction due to a

(2.i0)

_ij measures the contraction

stress applied in the i-direc-

tion.

The reduced stiffnesses in the x-y coordinate system

are determined by transforming the reduced stiffnesses in

the i-2 coordinate system into the x-y coordinate system.

The transformation matrix [ T ] needed for this is:

18



cos 2 8 sin2 8 2 sin 8 cos 8

sin2 8 cos2 8 -2 sin 8 cos 8

-sin 8 cos 8 sin 8 cos 8 cos2 8 - sin2 8

(2.11)

where

for a

Given values of stress 0r strain with respect

coordinate system, these may be transformed

coordinate system according to the following:

8 denotes the angle from the x-axis to the 1-axis

positive rotation in a Cartesian coordinate system.

to the x-y

to the 1-2

o"

0"2

T12

= [ T ]

O,x

C77

Tx 7

E I

6 2

FLy

2

= [ T ]

E K

6
y

Fxy

k 2

Conversely, given stress or strain in the 1-2 coordinate

system, these may be transformed to the x-y coordinate

system according to the following:

Cry

Txy

: [T]-I

o I

0"2

TI2

6
X

E
y

Fxy

2

: [ T ]-I

FEz

I

F12

2

The reduced stiffnesses in the x-y coordinate system

for a lamina, given the reduced stiffnesses in the 1-2

coordinate system, can be determined using the following

equation: (Jones [i], p. 50).

19



where :

[T3-Z :

CQ]

[ T ]-T :

= [ T ]-i [ Q ] [ T ]-T (2.12)

reduced stiffnesses in the x-y coordinate system

inverse of transformation matrix [ T ]

reduced stiffnesses in the 1-2 coordinate system

transpose of inverse of matrix [ T ]
F,

The stress-strain relations in the x-y coordinate system for

an orthotropic lamina in a state of plane stress then

become:

Tzy Fxy

Txy
Qll Q12 Qls

: Q12 Q22 Q2s

Q16 Q2_ Q6s

E
X

6
y

F
xy

(2.13)

It is important to note that in the x-y coordinate

system there is coupling between the shear strain and the

normal stresses, and coupling between the shear stress and

the normal strains. The lamina appears to be anisotropic in

x-y coordinates. However, the lamina is orthotropic because

there are still only four independent material properties.

The lamina is designated as generally orthotropic and can be

characterized by equation 2.13. (Jones [i], p. 51).
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Force And Moment Resultants

The z-location of a layer in a laminate is shown in

Figure 2.6. In particular, the k-th lamina is bounded by

the coordinates z k and Zk_ I. When a plate is subjected to

loads, stresses develop in each layer. To aid in deriving

the governing differential equations, these stresses are

lumped into equivalent forces and moments, commonly referred

to as resultants. The force and moment resultants acting on

an element of the plate are shown in Figure 2.7. These

resultants have units of force per unit length or moment per

unit length in the x and y directions. N x and Ny are in-

plane normal force resultants, N is the in-plane shear
xy

force resultant, Mx and My are bending moment resultants,

and Mxy is the twisting moment resultant.

The force and moment resultants are related to the

stresses by the following equations:

+_H +_H

Nx = _ _x dz (2.14a) Mx = _ ax z dz (2.14d)

-M,H -_H

Ny - ; a, dz (2.14b) My - _ cy z dz (2.14e)

-½H -_H

+_H +_H

Nx, = _ TxydZ (2.14c) Mxy = _ rx,Z dz (2.14f)

-_H -_H
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Figure 2.6 Geometry For Layers In A Laminate
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N

Figure 2.7 Plate Element With Force And Moment Resultants
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Substituting equation

in:

2.13 into equations 2.14a-f results

N x

Ny

+_H +_H ÷_H

-_H -_H -_H

+_H +_H +_H

-_H -_H -_H

(2 15a)

(2 15b)

+½H +½H +_H

-½H -_H -_H

dz (2 15c)

+_H +_H +_H

-_H -_H -_H

FxyZ dz (2 15d)

=

+_H +_H

I- IMy : Q,zExz dz + Q2zEyZ dz +

-_H -_H

+_H _

f Qz6 rxyz dz (2 15e)

-_H

+_H ÷_H +_H

-_H -_H -_H

(2 15f)

The strains E x , Ey , and

terms of the middle surface strains

and middle surface curvatures K0
z

equations 2.4a-c.

Fxy can be expressed in

Eo , Eo , and F0
x y xy

K0 K 0 using
y ' Xy

These expressions can be substituted into

equations 2.15a-f. Since the middle surface laminate quan-

titles are not functions of z , equations 2.15a-f become:

24



N x = EO

+_x +_H

x ; Q** dz + Ko, _ Q,z z dz

-_H -_H

ORIGINAL PAGE ;S

OF POOR QUALITY

+½x +½x
r - r -

+ Eo J -/ Q l dz + KO J -I Q z z dz7 2 7 2

-½X -½X

+½X • +½x

+ FOx7 _ Q, 6 dz + KOx7 _ Qz6 z dz (2.16a)

+½x +½x

-½X -½X

+½X +½X

+ Eo
7 _ 22 F 2

-½x -½H

+½x +_X

xy 26 xy 26
z dz (2.16b)

+_X +_H

-½x -½X

+½X +_X
F -- F --

4- Eo | Q dz + KO [ Q z dz
y j --2g y j --26

-½x -_H

+ ro,y _ Qs6 dz + KO

-½S

x7 _ Qaa z dz

-_x

(2.16c)
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M x

+½x +_H

= E o J_ Q z dz + K o J_ Qx 11 x 11

-½H -_x

z 2 dz

+½x +_x

+ _oy _ Ql2 z dz + KO _ Q1y 2
-½H -½X

z 2 dz

+½x L +½X

+ _o,f%__. + _o I% _
-½x -½x

z 2 dz (2.16d)

+½H +_X

-½X -_X

+

+½H +_x

_oI_ _+_o I_y 22 y 22

-½H -½X

Z2 dz

+_x

+ FOxy ; _2s Z dz + K °

-½x
xy

+_H

Q2_ z2 dz (2.16e)

M
xy

6O
x

+½X +_,x

I_ I-_ -_,6 z dz + KO z Z dz= Q,6

-½x -½x

+½X +KH

I f-+ Eo Q2 z dz + KO z2y 6 y Q26
-_x -_X

dz

+½X

+ Foxy _ Q6S Z dz

-½H

+_,X

+ K°xy f Q66 z2 dz (2.1Sf)

-_X
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Each layer can have its own unique fiber orientation,

so the Q's may be different for each layer. However, the

Q's are constant within a single layer, so the integrals in

equations 2.18a-f can be converted to sums over the layers.

The sums are defined to be:

+_H _
dz = X (Q11) k (z_ - Zk-X) (2.17a)

-½H

+½H N _ (2 17b)

I-At2 : Qt2 k=t

-WaS

+½H _ - (2 17c)
dz : Z (Q_6)_ (zk - zk-_)

-½H

+½H N _ (2 17d)
dz = _ (Qzz)_ (z_ - z_-l)I-Az2 : Q22 k=1

-_H

+½_ H - (2 17e)
dz : Z (Qz6)k (zk - z_-t)

A26 : I Q2e k=1

+_H . (2 17f)

As6 : I Q6_ dz = X (Qs6)_ (z_ - zk-t)k=l
-½X

- Z2 )
+½S , (Z2 k k-t (2.18a)

B11 : I Q_I z dz : X CQ_1)kk=t 2

-½H

+½H . (zZ k - z2k-t)

I-Blz = Qtz z dz = 2 (Qtz)_k=l 2

-½H

(2.18b)
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B16

+½H
N

I -= Q_6 Z dz = E (QI6)K
k=I

-½H

B22

+½H
N

I -Q2a z dz = E (Qa2)k
k=l

-½H

Bz6

+½H i

N

I -= Qz6 z dz = E (Q28)_
k=l

-½H

B66

+½s
N

_- -Qss z dz = E (Q66)k

-½H

mlt

÷½H
N

i- -Qll z2 dz = E (Qlt)k
k=l

-½S

m12

+½H
N

= _ Q12 ZZ dz = E (Q!Z)k
k=l

-½H

D16 =

+½H
N

Q16 z2 dz = X (QlS)k
k=l

-½H

+_H
N

D22 = I Q2Z z2 dz = _ (Q2zlk
k=l

-½S

+½H
N

D28 = f Q2, z2 dz = E
k=l

-½H

+½H
N

D66 = _ Q66 Z2 dz =
k=I

-½H

28

(zZ k - Z2k_Z)

(Z2 k - ZZk_I)

2

(Z2 k - ZZk.l)

(ZZ k - Z2k_ _)

(g3 k - Z3k.i)

(Z3 k - Z3k_1)

3

(Z3 k - g3kil)

3

(Z3 k - Z3k.1)

(Z3 k - Z3k.i)

3

(2.18c)

(2.18d)

(2.18e)

(2.18f)

(2.19a)

(2.19b)

(2.19c)

(2.19d)

(2.19e)

(2.19f)



The A's

the B's are

laminate, and

laminate.

are the extentional stiffnesses for the laminate,

the bending/extentional stiffnesses for the

the D's are the bending stiffnesses for the

These stiffnesses, using index notation, are:

A --
ij

N

Z (Qij)k (z k - Zk_ l) i,j = 1,2,6 (2.20)
k=l

. _ (z2_ - z2k_,)
Bij : Z (Qij)k i,j : 1,2,6 (2.21)

k=l 2

. _ (z3 k - z3k_ l)
Dij : Z (Qij)k i,j = 1,2,6 (2.22)

k=l 3

Equations 2.16a-f in terms of the A's, B's, and D's, now

become

N x : All E o + B + A 6o + B l K0x 11 K°x 12 y 2 y

+ Al6 Fo + B Ixy 6
KO

xy
(2 23a)

N : A,z Eo + B KO x + A Eo + B z KOx 12 22 y 2 y

+ A26 Fo + B 2 Koxy 6 xy
(2 23b)

N
xy AI6 Eo x + B16 Ko x + A26 Eo + B 2 KOy 6 y

+ A66 FO + Bxy 66
K o

xy
(2 23c)

M : B,I Eo x + D** KO x + B,2 Eo + D I KOy 2 y

+ B,6 FO + D KOxy 16 xy
(2 23d)

M = Bl2 Eo, + D,2 KO x + B22 Eo + D 2 KOy 2 y

+ B26 FOxy + D2e K°xy (2 23e)

Mxy : Bt6 Eo x + D16 Ko x + B26 Eo + D 2 KOy 6 y

+ B6_ FO + D KOxy 66 xy
(2 23f)
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Using matrix notation, equations 2.23a-f are:

N_

N 7

Nxy

M.

M
y

M, 7

All A12 A,g B** B12 B16

A,2 A22 A2s Blz Bz2 Bz8

A,s A26 As6 B,s B26 B6s

B11 BI2 BIg DII D12 DIS

BlZ B2: B:s D12 D2: Dzs

B,s Bz6 _86 Die D2_ D66

EO
x

Eo
Y

FOxy

KO x

K°y

K°zy

(2.24)

The coupling stiffnesses Bij are zero when the lami-

nate is symmetrical. These terms imply that there is coup-

ling between bending and extension. Subjecting a laminate

which has coupling stiffnesses to extensional loads will

cause the laminate to bend and/or twist in additlon to

stretching. Subjecting a laminate which has coupling stiff-

nesses to moments will cause" the middle surface of the lam-

inate to extend and shear, in addition to bending and/or

-twisting.

The coupling stiffnesses are equal to zero when the

laminate is symmetric in both geometry and material proper-

ties about the middle

[I], page 160)

If the laminate is

surface of the laminate. (See Jones

symmetric, equation 2.24 decouples

and results in:

N,

Ny

Nx 7
A, t

A_z

Als

AI2

Az2

Azg

AI6

Az6

A86

60 x

6°y

F°.y

(2.25)
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M x

M_

Mxy
DI I D12 D16

D_2 D22 D26

D,6 D26 D_6
KO x

KOy

K°x7

(2.26)

The presence of the A,6 and A26 stiffnesses in equa-

tion 2.25 shows that there is coupling between normal force

resultants and shearing, strain, and coupling between the

shearing force resultant and normal strains. The presence

of the Dl6 and D26 stiffnesses in equation 2.26 shows

that there is coupling between bending moment resultants and

twisting curvature, and coupling between the twisting moment

resultant and normal curvatures.

Nonlinear

Conditions

Consider a portion

plate as shown in Figure

Equilibrium Equations

of a

2.8.

And Associated Boundary

laminated fiber-reinforced

The x-y coordinate plane

corresponds to the middle surface of the plate. The z-axis

is perpendicular to the middle surface and, as stated be-

fore, z is measured relative to the middle surface. The

total thickness of the plate is denoted by H. The interior

region of the plate is denoted by Q The boundary of the

hole in the plate as seen from the z-direction is denoted by

F I. For our case, the boundary F I does not have prescribed

forces acting on it and no displacements are specified. The

boundary around the plate as seen from the z-direction is
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denoted by F 2. For simplicity F 2 is considered at this

point to be a smooth curve. In reality, F z is the boundary

of a rectangular plate. The in-plane force resultants N,

and N,, are prescribed on F z.

normal to the boundary F 2 and

tangential to the boundary F 2. The normal

tion q(x,y) acts downward on the region

to the x-y plane of the plate.

The total potential energy of the loaded plate

defined as the sum of the total strain energy U

potential of the applied force V

= U + V

Nn acts in the direction

Nns acts in the direction

load distribu-

Q perpendicular

, is

and the

(2.27)

The equilibrium equations and boundary conditions are deter-

mined by setting the first variation of the total potential

equal to zero. (Shames and Dym [2], pp. 401-408). That is

(1) (I)
6 _ = 6 ( U + V ) = 0 (2.28)

The total strain energy is

E . ,

_j

V V 0

where:

E
ij

U = I Tij dEij (2.30)

0

This integral is a point function of the upper limit Eij if

this integral is independent of the path taken between

the limits 0 End Eij , meaning that Tij dEij must be a

perfect differential. When these conditions are met, then

33



d_ : Tij dqij (2.31)

Recall from page II the assumption that each layer exhibits

linear elastic behavior, meaning that each stress component

is linearly related to all of the strains by Hooke's Law

which can be stated as:

Tij = Cijk, Ekl (2.32)

where Cijkt : Cjikl since Tij : Tji

and Cijkl = Cijlk since 6kl : 61k

Substituting equation 2.32 into equation 2.29 results in

.... :i: , L "

;If[I ]=U::_= Cijkl Ekl dEij dY (2.33)

y
m

where the quantity inside the brackets is a perfect differ-

ential and the coefficients Cijk _ are cons£ants. -Equation

_.33 may now be expanded t0:take the form

V
m

if Cijkl : Ckllj

Thus, the following is established:

U : _II _ Cijkl Ekl 6ij d_

V

+ Cklij E i3 dEkl ] d_

(2.34)

Substituting Tij

in

for Cijkl Ekl

U = _ Tij Ei3 d_

V

As stated on page

state of plane stress, so expanding

in equation 2.34 results

(2.35)

ii, it is assumed that the plate is in a

equation 2.35 for this
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case leads to

V
i

(2.36)

Returning to contracted notation,

Txx : qx Tyy : _y

Exx : E x Eyy = EF

and noting that Ezy = _ Fzy

Substituting these relations into equation 2.36 results

in the following equation for the total strain energy for

linear elastic behavior

v

(2.37)

Using equations 2.8 and 2.9, the stress-strain rela-

tions in the x-y coordinate system for linear elastic behav-

ior, an orthotropic material, and a state of plane stress,

are:

E x

_z : (Ez + _yxEy ) (2.38a)

1 - _xy_yx

Ey

_7 : (Ey + _xyEx) (2.38b)

1 - _xy_yx

Txy = Gxyrxy

From equation 2.9b

Ey_xy

1 - _xy_yx

(2.38c)

Ex_yx
: (2.39)

1 - _xy_yx
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Substitute equations 2.38a-c into equation 2.37 to

obtain

U
E

: ill[ .
V i - _xy_yx

(E x ÷ _yxEy)E x

+

E

7 (Ey + _,yE,)Ey + (G.yFxy)Fxy ] dV
I - l_xy_yx

Combining terms in the equation above, obtain:

U : _ x 2
E x + EyE x

1 - _xy_yz 1 - _xy_yx

E Ey_xy

Y 6y 2 + 6xEy

i - _xy_yx i - _xy_y x

2 1 d_+ GxyFxy (2.40)
J

The number of terms in equation 2.40 may be simplified using

equation 2.39 to obtain:

E 2 + EYESU : _ x Ex

V i - _xy_yx 1 - _xy_yx

E

2 + z ] d_+ Y Ey GxyFxy

- _Zy_yx
J

(2.41)

The first variation of the total strain energy is taken with

respect to the strains as extremal functions, noting first

that in principle:
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8(a 2 )

8(a8)

Therefore,

(I)
8 U =

: 2 a(Sa) (2.42a)

: a(8B) + B(Sa) (2.42b)

;;;[ 2E 2 Ex_y x• ExSE x + EySE x

v I - l.Lxyi.Ly x i - _xy_yx

o.

2 Exay x 2 Ey

+ ExSEy + EySEy

- _xy_yx _ - _xy_yx

+ 2 GxyFxySFxy ] dV (2.43)

The factor _ is cancelled in the process and again using

equation 2.39 to change the third term in equation 2.43 to

obtain the desired form for a recombination of terms:

(1)
8 U :

* Ex86 x + 6y86 x

V 1 - _lxy_y x 1 - _lxy_ly x

EyMxy Ey
+ Ex86y + 6y8£y

1 - _xy_yx 1 - _xy_yx

(*)
8 U :

GxyFxySFxy ] d_[

E

v 1 - _x y_y x

Ey

+ (_xyEx + Ey) 66y

1 - _xy_yx

GxyFxySFxy ] d_

(2.44)

(2.45)
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Using equations 2.38a-c, the first variation

strain energy is expressed as:

in the total

(I)
8 U :

V

(2.46)

To express the first variation in the total strain

energy in terms of stress and displacement, substitute the

strain-displacement rela£ions in equations 2.3a-c into equa-

tion 2.46 to obtain:

(1)
U

V

+ o,_(v0y - z w0.yy + _ [w_,121

+ T, TS(uOy + VO,. - 2 Z wO,,y + WO,x wOy) ] dV (2.47)

Noting that the delta operator and differential operator are

commutative as shown by the following in principle:

6(a,x) : (Sa!, (2.48a)

8(a,y) : (Sa!_ (2.48b)

Using equations 2.42a-b and 2.48a-b, equation 2.47 becomes

(x)
8 U :

V

- + w0 (6w0+ %{(6v0!, . (sw0!,, ., !y

+ T.,{(euo!,+ (evo!,- 2 . (8.o;,, + wo (ewo! + wt,(6wo!,,}] dV
(2.4':3)

Expressing the volume integral in equation 2.49 in terms of

plate thickness and the area of region Q , or middle surface

of the plate (x-y plane), results in:
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(i)
6 U =

+WaH

Ill [o._uo;_ .._.o!. +.o._0.o!.,
o -_H

4" O'y{(SVO!y - Z (SWO!yy 4" WO, y(aWO !y }

+ -,-{(SuO!y+ (_vO! - 2 z (8.o!,,,}

+ Ts,{w0, z(Sw0!y+ w0,_,(Bw0!.} ] dm dx dy (2.50)

The middle surface displacements u0, v0, and w0 are

not functions of z. Therefore those displacements may be

integral over the thickness of theplaced outside of the

plate. The result is

(I)
8 U =

+FaH +½H

II ..o _.o _;o, _, _,,o!,,I[((suo!, ,, !, o,, d_.
o -½H -_H

+ {(6vO!y + wo,7(Swo!7

+

+½H

((_uO! + (Sv0!,} _ r,,y
-½H

+ {.o (_.o!,

+_H +_H

) ; c;, dz- (6W0!y,_ _,z dz

-_H -WaH

+_H

dz - 2 (SwO!xy.[ "rxyz dz

-_H

+Y,H

+ wO,,(6wO!x} ; T,ydZ ] dx dy (2.51)

-WaN

Substituting equations 2.14a-f, the force and moment result-

ants, into equation 2.51 results in

(I)
8 U = .[.[ + .o (_,,,o!.} _ M.(8,.,o!..[ N.((SuO!.

O

+ Ny{(SvO!y + wO,y(SwO!y} - My(SWO!yy

+ N.y{(Su0!y+ (Sv0!.} - 2 Mxy(SW0!xy

+ ,.,<,?.(8.o!,+ ,.,?,(8.o!.} ] dx dy (2.52)
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The first variation of the potential of the applied

forces and the normal load distribution is

F2 F2 Q

Nn is taken as positive in compression asNote that shown

in Figure 2.8.

Using equations 2.52Land 2.53 to form the first varia-

tion of the total potential energy _ and setting that varia-

tion equal to zero to satisfy the necessary requirement for

extremization of _, leads to

(,) (I) (I)
6 _ = 8 U + 6 V : 0

(*)
8 _ ÷ w0 (6w0 } - M,(Sw0: [ N,c(6uo!, , !, !,,

0

+

+

+

N_{(Sv0!y + w0,7(Sw0!y} - My(Sw0!yy

N,,{(Su0! + i_v0!x} - 2 Mxy(_w0!xy

N.,{.0.(6.0!÷wo(_wo!_ ] d×dy

F2 F2

= 0

Referring to Figure 2.9,

- f_ q 6w0 dx dy

G

(2.54)

and using the chain rule for

differentiation to establish a relation between the partial

derivatives in x-y coordinates and the partial derivatives

in n-s coordinates, results in

( !x = (n!, ( !n + (s!x ( !s (2.55a)

i ), : in),i ),, + i,!,i ), (2.55b_

Using Figure 2.9, equations 2.55a-b can be re-written to be
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dy

Y

- dx \

n

X

dx = - cos _ ds = - any ds

dy = cos 8 ds = anx ds

Figure 2.9 Relation Of Differentials At Boundary
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c!, : !, ÷ a,,C !,  2.S6a 

( !, = an,( !n + aay( !s (2.56b)

From the geometry of Figure 2.9, considering n and s to be a

rectangular set of coordinates at a point on the boundary

a.x : cos(n,x) : cos 8 : (n!x (2.57a)

asx : cos(s,x) : cos(_/2 + 8) = - sin 8 = (s!x (2.57b)

a,y : cos(n,y) : cos'_ : sin 8 : (n!y (2.57c)

asy = cos(s,y) = cos 8 = (s!y (2.57d)

where by definition:

cos(n,x) is the cosine of the angle between the n and x axes

cos(s,x) is the cosine of the angle between the s and x axes

cos(n,y) is the cosine of the angle between the n and y axes

cos(s,y) is the cosine of the angle between the s and y axes

From equations 2.57a-d

asz : - any (2.58a)

asy : anx (2.58b)

Using equations 2.58a-b, equations 2.56a-b can be re-written

as

( !x : anx( !n - anT( !s (2.59a)

From the geometry of Figure 2.9

dy
anx = cos 8 = a-s (2.60a)

dx
any : cos ¢ : - _ (2.60b)

In the x-y coordinate system, u0 and v0 are the middle

surface displacements. In the n-s coordinate system, u0
n

and u 0 are the middle surface displacements From the
8
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geometry of Figure 2.9, transformation from the x-y

coordinate system to the n-s coordinate system yields

U 0 : U 0 + a n vOn anx y

U 0 : - U 0 + a n v 0s any ,

Transformation from the n-s coordinate system

(2.61a)

(2.61b)

to the x-y

coordinate system yields

u0 - a n u% (2 62a)u° = anx n y s

uO + a n uO (2 62b)vO : any n • s

Green's Theorem for integration by parts in two dimen-

sions may be expressed in general as follows:

;; u _,.dx dy : - ;_ U,x _ dx dy + _ (u_)anxdS (2.63a)

_; u 8,ydx dy : - ;_ u,y_ dx dy + _ (a_)anydS (2.63b)

Applying Green's Theorem as expressed by equations 2.63

to change the terms in equation 2.54 which involve partial

derivatives of the variations in u 0, v0, and w0, and to per-

mit extraction of those terms from the area integrals, re-

sults in the following:

;iN.(Su°)xdxdy=-_iN.,xSu0 dxdy+ _NxSu0 anxds
r 2

:- ;I (Nxw_x)'xSw° dx dY + _ N. wO,xSwO an,ds
F
2

;i M'(SW°!xzdX dY :- ;I Mx'*(SW°!xdX dy + !r Mx(Sw°!xan'dS

: ;I Mx,xx 8wO dx dY- ! M,,x8W° anxds + _ Mx(8W°!xanxdSF F 2

Note that Green's Theorem is applied for two successive in-

tegrations to extract the second-order partial derivative of
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the variation in w0 whereas one integration is required to

extract first-order partial derivatives of the variations in

u O , v 0 , or w O .

_ N_(Sv0!ydx dy =- _i Ny,y6VO dx dy + !NySv0r anyds

=- _i (NywO,,)_SwO dx dy + _ N,wO 8wo anyds
F 2

r 2

= Ji M''''SwO dx dy F! H'''SwO anyds + !M'(6wO!'anydsr

(Su°!ydx dY =- _i N''''SuO dx dY + !N''SuOF anydS

(Sv°!.dx dY =- _l N,y,,Sv° dx dy + !Nxy6vOF anxdS

_i N*yw'°x(Sw°!ydx dy

= - _I (Nx w° ) ySw° dx dY + _Nxyy,x ,
F
2

=

WOx6WO anydS

=- ;i (NzyW_y)''6w° dx dy + _ NxyWOySWO anxdS
F
2

;IMxy(SW°!xydx dy :- [i Mxy'x(Sw°!Fdx dy + _ H.y(SW0!yanxdS
r 2

= _l M''''YSW° dx dY - ! H*y'xSW° anyds + !H'y(SwO!yan'dsr r

The equation immediately above was integrated first with

respect to x and then integrated with respect to y. Revers-

ing the order of integration provides a result which may be

used additionally in view of the factor 2 in equation 2.54

for the term involving the moment resultant M
xy"
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+

= Hrr,r_ 8W° dx dy -r HxY'r_w° anrds +r! Hxr(6w°!xan_ds

The results of having applied Green's Theorem to equation
2.54 may be Combined and written

as follows for extremiza_

ti°nfif the first variati.on of the total potential energy"

" Nx,x_u° dx dy + _ _x6O 0 ds
F 2 an=

,z , dx dy N _o 8wo
_'2 a

I_ nzds
" NY,y By° dx dy + _ NySvo

r_ anyds

- f_ (NYw°Y),y _'0 dx dy + _ Ny_,,oy_,o

f_ /'2 any dS

- N y,y_uO dx dy + _ NzySu ° a ds
r 2 ny

- Nxy,x v° dx dy + _ Nxy_v 0

r anxdS

(N,,y,.,,o)
,y dx dy + : N . w o

f_ x7 ,xSW ° anyds
r 2

=Y 'Y , dx dy + !r NxYw°y 6_° anxd st

- f_ H, 6w0

tx, dx d_, + ! H.._ ° !
f_ r . anxds -r Hx (6_°)_ a ds- My, 6wO , nx

y y dx dy +

- fl H'Y,,y _w° dx

- II Hxy,y=Swo dx

!Hy yS_Or ' anydS -F :yanydS
My (_wo

dy + _ H, _6_o

r 2 Y, anyds - _ Hxy(6wO
r !yanxds

dy + Hx _0

r 2 Y, y anxds - :

H,y(_O!xa .ydS

r • q 6;¢o dx dy : 0 (2.64)
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Equation 2.64 is expressed in terms referred to the x-y

coordinate system and provides a basis with which to deter-

mine plate equilibrium equations and the associated boundary

conditions. The equation is complicated but may be simpli-

fled if a selection of terms is expressed with respect to

the n-s coordinate system.

Stress components in _the x-y coordinate system trans-

form as a second-order tensor to the n-s coordinate system

as expressed by the following equation:

(ns) (xy)
Tpk : apj aki Tj_ p,k : n,s j,i = x,y (2.65)

The stress component Tnn is

Tnn = anj ani Tji

Tn n -- anx an• Txx + anx any Txy

+ any anx TTz + any any Tyy (2.66a)

The stress component Tn, is

= a n a s TjTns J i i

= a s T x + a n a s T xTns an• • x • y y

+ any as• Ty x + a
(2.66b)

n7 a_y Tyy

The stress tensor is symmetric (equation 2.32) so that equa-

tions 2.66a-b can be re-written as follows:

2 + 2 2
Tn n : an x T• x anz any Txy + any Tyy

(2.67a)

Tn6 = an• as• Tx• + an• asy Tzy

+ a n a, (2 67b)+ any asx rxy y y ryy .

Using the following relations

Tnn = On Txx : _z Tyy = qy

any : - as• anx asy

46



Equations 2.67a-b may be expressed as follows:

2 ÷ a_ _yan = anz qz + 2 anx any Txy y

2

Tns = - anz any _x + anx Tzy

2
- an7 Txy + anx any O'y

The force and moment

system may be expressed in terms of stress

(2.68a)

(2.68b)

resultants in the n-s coordinate

equations:

÷½H

Nn = I _n dz
-½

+½H

Nns : I Tns dz
½

by the following

+_H

(2.69a) Mn : j _n z dz (2.69c)
-½

+½H

(2.69b) Mn. = i Tns Z dz (2.69d)

The force resultants in the n-s coordinate system may be

expressed in terms of the force resultants referred to the

x-y coordinate system by integrating equations 2.68a-b over

the plate thickness and using the definitions given by equa-

tions 2.69a-b and equations 2.14a-c which yields the follow-

ing force resultant transformation equations:

Nn = a_z Nx + 2 an. an7 Nz7 + a_7 NF (2.70a)

2 Nx - a_ Nxy + Ny (2.70b)Nns : - anz any Nx + anx y 7 anx any

The moment resultants in the n-s coordinate system may be

expressed in terms of the moment resultants referred to the

x-y coordinate system by multiplying equations 2.68a-b by z,

integrating over the plate thickness, and using the defini-

tions given by equations 2.69c-d and equations 2.14d-f which

yields the following moment resultant transformation equa-

tions:
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M_ = a_ M= ÷ 2 a._ a_ M_y + a_T My (2.71a)

Mn= = anz any M, + 2 M - a_ M z + My (2 71b)- an, xy 7 7 anx any "

Proceeding with a selection of terms in equation 2.64

to be referred to the n-s coordinate system, and first con-

sidering

Used + to express variations in uO and v0 as follows:

8u0 = anx 8u0 n - any 8uO I

8vO = any 8u0 n + anx 8uO s

Selecting boundary integrals which include variations

the boundary integrals, equations 2.62a-b may be

(2.72a)

(2.72b)

in uO

and v0 from equation 2.64, those integrals are referred to

the n-s coordinate system as follows:

NxSU 0 anxds + _ NxySu° anydS
F F z

+r! N=ySv0 an,dS

= _ (Nza "* + N,,yany)(an=SUO" - anySuO,) ds
r 2

+r! (N'yah* + Ny any)(anySU°n + anx 8u°

2 + 2 N + z
: (Nxan= xyanxany Nyany) 8U°ndS

r

! ,-+ (- Nzanxany + Nxyan, -
r

= r! NnSu°ndS + rz_ Nn'Su°'ds

+ _ Ny 8vO anydS

F 2

,) ds

2

Nxyany + Ny anxany) 8u0sds

(2.73)

Equations 2.70a-b were used to obtain the final result.

Equations 2.59a-b may be used to express derivatives of

wO as follows:

= a n (wO!n - any(W0!, (2.74a)(wO!,= =
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(wO!y : any(W0!n + anx(W0!s (2,74b)

Selecting boundary integrals which include derivatives of

and variations in w0 from equation 2.64, those integrals are

referred to the n-s coordinate system as follows:

f

: _ (Nxan, +
F 2

r

anxds +r_ Nzyw_*Sw° anyds

+ NxywOySwO anxds

F 2

Nxyany)(anx(WO!, - any

+ _ Nyw°,y 8wO an_S

F 2

(wO!,) 8wO ds

r

+ _ (Nxya nx + Nyany)(any(w°!n + anx(WO!s) 8wO ds
r z

2 )(w0 ds(Nxa_, + 2 Nxyanxany + Nyany !nSw 0

2
+ Nxyan2, - Nxyany + Nyanxany)(wO!sSwO ds

÷ N., wo!,sw0ds
['2

(2.75)

+r! (- Nzanxany

_ Nn(WO!nSWO ds

F 2

Equations 2.70a-b were used to obtain the final result.

Equations 2.62a-b may be used to express variations in

wO as follows:

8wO : anx 8wO - a n 8wOn 7

8w 0 : any 8WOn + anz 8wO

Selecting boundary integrals

s (2.76a)

, (2.76b)

which include derivatives of

the moment resultants and variations in w0 from equation

2.64, those integrals are referred to the n-s coordinate

system as follows:

Mx,xSw 0 anzds + ! Mxy,ySw0 anxdsF r
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= r! (Mx'manx

+ _ Mxy,x6W° anyds

F 2

Mxy,yanx) 6wO ds

+ F! My'y6W° anyds

+r! (Mxy'xany + MY'yany) 6w0 ds

= [ (M.,. + a.. +
F 2

Multiplication of the

CMxy,. + MT,y) any ] 8w0 ds

three-dimensional equilibrium

equations of elasticity by z and then integrating over the

plate thickness, in the absence of body forces, establishes

relations among the quantities M x , My , Mxy , Qx , and Qy ,

where the latter two quantities are defined as the trans-

verse shear force resultants from classical plate theory.

The resulting equilibrium equations are:

M,,, + Hxy,y : Q, (2.78a)

Mxy,, + My,y : Qy (2.78b)

Qx,. + Qy,y + q(x,y) : 0 (2.78c)

where q(x,y) is a normal load distribution on the plate.

The right sides of equations 2.78a-b may be substituted

into the boundary integral immediately above.

F! [ (Mx'x + M,y,y) an, + (Mxy x
|

: _ [ Qx anx + Qy an,

r 2

F 2

+ MT, 7

] 8w0 ds

) any ] 6w0 ds

(2.79)

Equation 2.61a. which transforms quantities in the x-y coor-

dinate system to the n-s coordinate system, was used to
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obtain the final result given in equation 2.79.

Equations 2.59a-b may be used to express derivatives of

variations in w0 as follows:

(6wO!= = anx(6wO!n - any(6wO!, (2.80a)

(Sw0!, = aa,(Sw0!, + aa,(Sw0 !, (2.80b)

Selecting boundary integrals which include the moment re-

sultants and derivatives of variations in wO from equation

2.64, those integrals are referred to the n-s coordinate

system as follows:

-r! Mx(Sw° !*anxds - r! M*y(SW°!*anyds

! Mxy(Sw°!yanxds - ! My(6W°!,anydS-F r'

: - _ (Mxan, + MxyanyI(anx(SWO!n - any(Sw°!,) ds

r 2

+ (6w0 ) ds- (Mxyanx + Myany)(any(6W°!n anx !s

r 2

+ 2 M + M z= - (MxanZx .yanxany ,any )(Sw0 !nds

r 2

2 Ms 2
- (- Mxanxany + Mxyanx - yany
r

= -F! Mn (SWO!n ds- !MnsF (6wO!, ds

+ Myanxany) (SwO !sdS

(2.81)

Equations 2.71a-b were used to obtain the final result.

The second integral in equation 2.81 can be considered

further. If the moment resultant is continuous and the

boundary is smooth, then an integration by parts yields

2 2

; Mns(SwO!sds = - ; Mns,sSwo ds
1 t

+ [ _.,6w0 ] ]2 (2.82)
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For the case where the boundary is a smooth closed curve,

the expression in brackets is equal to zero and the result

obtained in equation 2.81 may be written as follows:

M n (6w0!n ds - _ Mn, (6w0!, ds

r

-r F

r 2

For the case where the boundary is not smooth, such as a

plate with four smooth sides which terminate at corners, or

discontinuous points, then the expression in brackets in

equation 2.82 must be evaluated over each section of smooth

continuous boundary.

Having simplified the boundary integrals, equation 2.64

may be rewritten as follows for extremization of the first

variation of the total potential energy.

- ;I + q ]Sw0 dx dy_x,xx+ 2 Mxy,xy+ My,yy

+ 13..,. + .oc.o!o + + 8.0
I" 2

+ F! (_n + Nn)_U°ndS + r! (_n" + Nn')Su°eds

- _ - : 0 (2 84)Ma(SW0!n ds [ Mn,SW° ] lr
F2" 2

where the last term must be evaluated over each portion of

the boundary between discontinuities. If the boundary is

smooth and continuous, that term equals zero.
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Having satisfied the requirement for extremization of

the total potential energy by equating its first variation

to zero, resulting in equation 2.84, a basis has been estab-

lished for a series of deductions to be made. The middle

surface displacements u0, v0, and w0, were specified to be

arbitrary in the region Q. This means that variations in

the surface displacements are not equal to zero in the re-

gion Q. If equation 2.84 is to be satisfied, then those ex-

pressions in brackets in the surface integrals which are

multiplied by 8u0, By0, or 8w0, must be equal to zero.

Those expressions are the equations of equilibrium and are

written as

Mx ,x + 2 MxT,xy+ My,yT+ (NxwOx),x+ (N x wO ), y ,X ,y

+ (Nxywe, y),x+ (Nyw0y),y + q = 0 (2.85)

Nx,x + Nxy,y = 0 (2.86)

Nxy,,+ Ny,y = 0 (2.87)

Equations 2.86 and 2.87 can be identified with the

equilibrium equations for plane stress. Equation 2.85 may

be simplified by using equations 2.86 and 2.87 to eliminate

some terms when its product terms are expanded. Expansion

of the product terms are written as

we ) : N we + N we(Nx , x ,X X , XX X, X , X

(N,y w0,),, : N,, wO,,y + Nx,,, W0x

N x 0 : N w0 + N w0( y w y),x xy ,yx xy,x ,y

(Ny w0y) : N w0 + Ny w0,Y Y ,YY ,Y ,Y

Terms from each of equations 2,88a-b

(2.88a)

(2.88b)

(2.88c)

(2.88d)

and equations 2.88c-d
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can be combined and eliminated on the basis of equation 2.86

and equation 2.87 as follows

(Nx,• + Nxy,y) w0,. : 0 (2.89)

(Nxy,. + Ny,_) w0,y = 0 (2.90)

The terms in equations 2.88a-d which remain are

N x w0 N x w 0 N• w o Ny wO,xx ' y ,xy ' y ,yx ' ,yy

and the second and third %erms may be combined.

Equation 2.85 can be rewritten as

Mx,xx + 2 M.y,xy + My,yy

+ N wO + 2 N x wO + NywO + q = 0 (2 91)• ,•X y ,Xy ,yy

This equation of equilibrium, opposed to the linear differ-

ential equation of classical plate theory, is nonlinear. It

contains the nonlinear terms consisting of products of the

force resultants and curvatures.

In addition to the means to determine the equations of

equilibrium, equation 2.84 contains the natural (or force)

and the kinematic (or geometric) boundary conditions which

must be satisfied or specified on the boundary F 2. These

boundary conditions are

= -N or is specified (2.92a)Either N n , , uO

Either Nns : -Nns or, u Os is specified (2.92b)

Either Mn = 0 or wO is specified (2 92c)' ,n *

Either Qn + Mn,,,

= 0 or w0 is specified (2 92d)+ NnsW°s+ N.w0.

And, at discontinuities [ Mn86WO ] = 0 (2.92e)

The last three conditions contain those terms which are
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characteristic of conditions embodied in classical plate

theory. However, the effective shear force condition in

equation 2.92d, consisting of the shear force resultant term

and the moment resultant term, has been made more complicat-

ed by the addition of product terms (in-plane force result-

ants multiplied by the slope at the boundary).

The equilibrium equations 2.88, 2.87, and 2.91 can be

written using equations 2.25 and 2.26 as follows:

[AltE0 + Atz60 + At6r0,],, +

(2.93)

[A16 Eo + A2,Eo + A,,ro ],, +

(2.94)

[D_.,KO + D,zKO + D,6KOy ] ,.,

+ 2 [DisK° + D2_K° + D,BK°y ] ,xy

+ [D,2KO" + D2zKO + D_,KO ],yy

+ [A,,_o + A,=_o+ A,,ro ].oDII

+ 2 [A,,_o + A_,Eo+ A,,ro]wo
+ [A,2_o + A_ + A_,ro ].o,,, + q : o

(2.95)

The equilibrium equations 2.93, 2.94, and 2.95 can be

written in terms of the surface displacements using equa-

tions 2.5a-c and 2.6a-c in substitution resulting in

[A11{u_ + _(wo )2} + A I {v_,x 2 y + _(w0 )2}
,Y

+ Al6{uOy+ v 0 + wOw 0 }],_ ,X ,y ,X

+ [At_<u°+ _(wo )_}+ A_ {vO,x 6 y + _(w_y)2}

+ A,,{uo.+ vo+ wo,.wo,,}],, : o (2.96)
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r-Al6{uOz+ _(wo )2} + Az {vO + _(wo )2},J 6 y ,y

+ As6{uO, + vO + _o _o }],X s,X ,y ,X

+ I-A,_+Cu+,,+,+C,+?x)+-}+ A+_.(,,,o+ ,+c,+?,)+-}

+ A2eCuOy+ vO + +o +o }],X ,X ,y ,y
0 (2.97)

[AlICu_,+ _(wo,,)2} + Al2Cvo_+ _(wo, y)2}

+ A,+(_?,+ vO + +o .o }] .?.+X ,X ,y X

+ 2 [A1aCu0,+ M(wO, x)2} + Azs(vOy+ M(W0, y)2}

+ A,8{uO,,

+ [A,.+u+.++c.0)2}+ A++{v0,x 2 y

+ A26{U?y

+ v?,+ .? .o }] .oX ,y ,Xy

+ _(W 0 )2}
,Y

+ V O + wO wO _] wO
,X ,X ,y -J ,yy

LFDi w0 + D w0 + 2 D w0 +ll ,XX 12 ,yy 16 ,xy ,xx

2 [Dt6w0,, + D26w °,yy + 2 D 66w°,xy] ,x,

+ 2 D26.0xy] ,yyDi2wO + D 2 w0,XX 2 ,yy

+ q(x,y) = 0 (2.98)

The laminate extentional stiffness properties A and
ij

the laminate bending stiffness properties D_j are functions

of the spatial coordinates in equations 2.93, 2.94, and

2.95. These equations are partial differential equations in

x and y and may not be solved exactly. A finite element

method will be used to obtain solutions for these equations.

This will be discussed in detail in Chapter III.
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CHAPTER III

PROBLEM FORMULATION AND METHOD OF ANALYSIS

FOR TENSILE RESPONSE

Plate Geometries

The geometric configuration of the plate under consid-

eration is illustrated in_ Figure 3.1. The plate width is

designated by W , the plate length by L , and the plate hole

diameter by D The positive horizontal x-axis is to the

right and the positive vertical y-axis is 90 o counterclock-

wise from the x-axis. The plate is loaded by in-plane ten-

sile forces in the n-direction distributed uniformly over

each end.

Four discrete plate geometries are considered. Two

values of D/W equal to 1/3 and 1/6 are used alone with two

values of L/W equal to I and 2. The reason for considering

various geometries is to ascertain whether an improvement in

structural efficiency with the curvilinear fiber design is

or is not a function of plate geometry.

Equations Governing In-Plane Tensile Response

A thin symmetrically laminated plate in a state of

plane stress is considered. If the plate is subjected only

to an in-plane tensile loading, the displacements developed

due to that loading are only in-plane displacements. The

out-of-plane displacements equal zero. For that situation,
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equations 2.96 and 2.97 reduce to

[A**u0 + A I v0 + A v0 )] x,_ , ,, I_(?_ + ,_ ,

+ [AlsuO + A2 vO + As (uO6 ,y 6 ,y

EAr,u?. + A ,vo+. + vO..)] ..

+ vO )] = o (3 z),X ,y

+ vO )] = 0 (3 2),X ,y

These equations are lihear partial differential equations

and the coefficients Aij (i,j = 1,2,6) are functions of

the coordinates x and y. These equations can not be solved

exactly. A finite element method will be used to determine

solutions. The type of boundary conditions considered are

those associated with simply supported plate edges.

Finite Element Model, Finite

Constraints

The plates are analyzed

written previously to this study.

Element Meshes, And Boundary

using a finite element code

As shown in Figure 3.2,

the basic element is an eight-node isoparametric element

with nine Gauss integration points. A relationship is need-

ed between the element displacements at any point within the

element and the element nodal point displacements, since re-

sults are obtained with reference to the nodal point posi-

tions. This is accomplished directly through the use of in-

terpolation functions which are defined in a natural coor-

dinate system. Coordinates of any point in the element in a

global x-y coordinate system may be related to coordinates
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of the nodal points through functions expressed in a natural

r-s coordinate system.

The element shown in Figure 3.2 lies in the global x-y

coordinate system. A transformation between positions of

the nodal points and positions of

element is given by the relations

x

y

where

any other points in the

: { _i(r,s) x i " (3 3a)
i=l

= _ _i(r s) Yi (3 3b)i=l '

_i are the interpolation functions, x and y are the

coordinates of any point of the element, and x i and Yi are

the coordinates of the element nodes.

Interpolation of the element displacements is accom-

plished in the same manner as interpolation of the element

coordinates as expressed by

u = _ _ (r s) u. (3 4a)
i 1 i ' _

v = _ _ (r s) v i (3 4b)i=l i '

where u and v are displacements of any point of the element,

and u i and v t are displacements of the nodes. The same in-

terpolation functions are used to interpolate the element

displacements and the element coordinates. This is the

basis for the isoparametric finite element formulation. The

interpolation functions for the eight-node element shown in

Figure 3.2 are

@l(r,s) : 1/4 (I + r)(l + s)(-I + r + s) (3.5a)

@2(r,s) = 1/2 (I - rZ)(l + s) (3.5b)

@3(r,s) = 1/4 (I - r)(l + s)(-i - r + s) (3.5c)
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_4(r,s) = 1/2 (i - r)(l - sZ) (3.5d)

_5(r,s) = 1/4 (I - r)(l - s)(-i - r - s) (3.5e)

_s(r,s) = I/2 (I - r2)(l - s) (3.5f)

_7(r,s) = 1/4 (I + r)(l - s)(-i + r - s) (3.5g)

_8(r,s) = 1/2 (i + r)(l - s2) (3.5h)

The function _ and its subscript in equations 3.5a-h corres-

pond to the sequence and position of nodal numbers in Figure

3.2. (Reddy [3], pp. 242-254).

The finite element meshes for the 4 geometries consid-

ered in the tensile analysis are depicted in Figures 3.3

through 3.6. The plate geometry, loading and material pro-

perties are symmetric about the midspan of the plate in the

x and y directions, so only one quarter of the plate is used

in the analysis. Each quarter plate mesh consists of 192

elements with 12 elements placed around the hole edge.

The boundary constraints for the finite element mesh

are depicted in Figure 3.7. The nodes at the edge of the

hole are traction free. The displacements v0 in the y-di-

rection equal zero for the nodes on the edge which corres-

ponds to D/2 S x S L/2 and y = O, and that edge is traction

free in the x-dlrection. The displacements u0 in the x-di-

rection equal zero for the nodes on the edge which corres-

ponds to x = 0 and D/2 S y _ W/2, and that edge is traction

free in the y-direction. Tensile forces are prescribed in

the x-direction at the nodes on the edge which corresponds

to x = L/2 and 0 S y _ W/2, and that edge is traction free
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Figure 3.3 One-Quarter FiniteElement Mesh

For The Case L/W : 2 And D/W = 1/6
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For The Case L/W = i And D/W= I/6
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Figure 3.5 One-Quarter Finite Element

For The Case L/W : 2 And D/W : I/3
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One-Quarter Plate Finite Element Mesh
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in the y-direction. The edge which corresponds to 0 _ x

L/2 and y = W/2 is traction free in the x and y directions.

Procedure For Determining Fiber Directions In Curvilinear

Fiber Format Layers

As stated previously, the basic idea behind the use of

the curvilinear fiber format is to orient the fibers in the

principal stress directions. In general, the principal

stress directions depend on the stiffness properties. If

fibers were introduced into a plate of isotropic material,

for instance aluminum, forming in effect a layer, its stiff-

ness properties would be changed. However, its stress state

in the thickness direction would not be changed necessarily

and a principal stress direction could be determined. In

contrast, determining principal stress directions for a

laminate is not a meaningful or comparable concept. The

response of an entire laminate is dependent on the stiffness

properties of each layer which may be different layer by

layer. The stress state in each layer of a laminate is

different. Thus, principal stress directions may be deter-

mined for each layer and those directions will generally

vary from layer to layer. An iterative process was used to

determine the fiber directions within a group of layers

(designated curvilinear layers) such that the fibers were

aligned everywhere with the principal stress directions in

those curvilinear layers. Other layers (designated to have
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a straightline fiber format at a specified angle), which may

be included in a laminate design, would not be subject to

any required realignment with principal stress directions.

The iteration process determines the principal stress direc-

tions only for the curvilinear layers. With the procedure,

the fiber directions are specified relative to the positive

horizontal x-axis. "

Due to use of the finite element method, two approxima-

tions are inherent to the analysis. First, the fiber direc-

tions are assumed to be constant within an element. Second,

calculations for principal stress directions, and hence

fiber directions, are keyed on the stress computed at just

one Gauss point in the element.

chosen in order to use stresses

hole edge as possible. Figure

Gauss point number 8 was

which are as close to the

3.8 shows the location of

Gauss point 8 as the particular eight-node element was used

in this study. Gauss point 8 was chosen rather than Gauss

points 7 or 9 because Gauss point 8 is the central point in

that group of three and provides a better average value for

the stresses.

The iteration process is described in the following as

a series of numbered steps in procedure:

i. The iteration process may be initiated with the

assumption that the laminate is an isotropic plate of alumi-

num. Thus, only two independent material properties among

the modulus of elasticity E, the shear modulus G, and the

69



Poisson's ratio _, are required to compute the reduced

stiffnesses Q, using equations 2.ga-d. With the assumption

of isotropy, equation 2.8 is equivalent to equation 2.13.

Y

Gauss

Point 8

Hole

Edge

X

Note: Elements are enlarged in order to show the

orientation of Gauss point 8.

Figure 3.8 Orientation Of Gauss Point 8
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The isotropic material property values may be used as the

required input to the finite element program to provide

results for laminate strains E,, Ey, and F,y, and laminate

force resultants N., Ny, and Nxy, at each of the 9 Gauss

points in each element of the finite element mesh. As men-

tioned previously, only the results associated with Gauss

point 8 are used to establish the fiber direction character

of each element.

2. The iteration process continues with the assump-

tion that the laminate now consists of layers of orthotropic

material. Equations 2.ga-d are applied to determine values

of the reduced stiffnesses Q, obtained with respect to the

1-2 coordinate system. These values of reduced stiffness

are the same for every element in the finite element mesh

(as functions only of material properties).

3. At this point, if the fiber directions for the

curvilinear layers in the laminate were known, values of the

reduced stiffnesses Q, with respect to the x-y coordinate

system, could be computed for each element in the finite

element mesh using equation 2.12. These values of reduced

stiffness would be different from element to element of the

finite element mesh. Initially, however, it is assumed that

the fiber directions in all of the elements are equal to

zero. Values of reduced stiffness with respect to the x-y

coordinate system may be computed on that basis (zero direc-

tion). Recall that a laminate may consist of straightline
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fiber format layers as well as curvilinear fiber format

layers. The stresses for the curvilinear fiber format

layers in the x-y coordinate system should be computed sep-

arately from those of the straightline fiber format layers

in order to determine a new set of element principal stress

directions for the curvilinear fiber format layers. Values

of stress computed for one curvilinear fiber layer would be

the same for every layer in a group of curvilinear fiber

format layers within a laminate in the x-y coordinate sys-

tem. It follows that the element principal stress direc-

tions would be the same for each curvilinear layer within a

laminate.

4. Having values of laminate strain from step I. for

Gauss point 8 of each element and all fiber layers, and from

step 3., values of the reduced stiffness for the curvilinear

fiber format layers, equation 2.13 is applied to compute the

stresses in each element for the curvilinear fiber format

layers within the laminate.

5. The principal stress direction for the curvilinear

layers in each element is computed using the equation

18 = 112 tan-* Y (3.6)

where the principal stress direction for an element is spec-

ified by 8, and _, , oy , and T.y are the stresses computed

in step 4. At this stage in the iteration process, it is

convenient to designate these principal stress directions as
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the current

mat layers.

6.

the x-y

ues Q in

fiber directions for the curvilinear fiber for-

Applying equation 2.12, compute with respect to

coordinate system, a set of reduced stiffness val-

each element for the curvilinear fiber format

layers, using the values of reduced stiffness Q from step 2.

and the principal stress direction values obtained in step

5.

7. Applying equation 2.12, compute with respect to

the x-y coordinate system, a set of reduced stiffness val-

ues Q in each element for the remaining straightline fiber

format layers, using the values of reduced stiffness Q from

step 2. The fiber direction is specified and characteristic

of each layer. For example, the fiber direction of a pair

of layers may be specified to have fibers oriented at +45o

and -450 relative to the x-axis of the laminate.

8. Applying equation 2.20 to all of the layers in the

laminate, compute a set of extensional stiffness values A
ij

for each element of the finite element mesh using values of

the reduced stiffness obtained in step 6. and step 7.

9. Divide the extensional stiffness values Aij, by

the value of the thickness of the laminate to obtain lami-

nate stiffness property values for each element of the fin-

ite element mesh.

10. Input the laminate stiffness properties for each

finite element into the finite element program. The finite
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element program PrOduces a new set of results for laminate

strains E x, Ey, and Fxy, at each of the 9 Gauss points for

each element.

ii. Using the values designated as current fiber di-

rections for the curvilinear fiber format layers obtained in

step 5. and values of the reduced stiffness Q for orthotrop-

ic material obtained in step 2., apply equation 2.12 to

compute new values for the reduced stiffness

12. Using the values of reduced stiffness Q, obtained

in step II. and the values of laminate strain for Gauss

point 8 obtained in step i0., apply equation 2.13 to compute

values for the stresses _,, _y, and Txy, in each element for

the curvilinear fiber format layers.

13. Using the values of stress obtained in step 12.,

apply equation 3.6 to determine the principal stress direc-

tions in each finite element for the curvilinear layers. At

this stage in the procedure, these principal stress direc-

tions are now designated as current fiber directions ec, for

the curvilinear fiber format layers. The values for the fi-

ber directions obtained in step 5. are now redesignated as

previous fiber directions ep. With this step, one cycle of

the iteration procedure is completed.

The fibers have been aligned with new (current) prin-

cipal stress directions. The iteration procedure is simple,

straightforward, and repetitive, and may be continued until

the principal stress directions, and thus the fiber direc-
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tions obtained previously, can be compared to current fiber

directions within a chosen tolerance. That tolerance level

is considered to have converged when the following quantity

(relative error in 8c) is determined to be less than 0.01

for each element.

ep - 8c

< 0.01 _ (3.7)
ep

where 8p specifies the fiber direction for an element as a

result of a completed previous iteration and 8c specifies

the fiber direction for an element as a result of the com-

pleted current iteration.

Additional cycles in the iteration procedure may be

accomplished in the following steps.

I. Using values of the current fiber directions 8c

for the curvilinear layers in each finite element, and val-

ues of the reduced stiffness Q from application of equations

2.9a-d, apply equation 2.12 to compute values of the reduced

stiffness Q.

2. Using values of the reduced stiffness Q for the

straightline fiber format layers which have specified fiber

directions, apply equation 2.12 to compute values of the

reduced stiffness Q.

3. Using values of the reduced stiffness Q obtained

in step i. and step 2. above, apply equation 2.20 to compute

values of the extensional stiffness Aij for each finite ele-

ment of the laminate.
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4. Divide the extensional stiffness values Aij by the

thickness of the laminate to obtain values of the laminate

stiffness properties for each finite element in the finite

element mesh.

5. Input the stiffness properties obtained in step 4.

into the finite element program to obtain values of laminate

strain E., Ey, and Fxy.

6. Apply equation 2.13 to obtain values of stress _x'

qy, and T,7, using the values of reduced stiffness Q obtain-

ed in step i. and laminate strains obtained in step 5.

7. Apply equation 3.6 to obtain the principal stress

directions using the stresses obtained in step 6.

8. Apply equation 3.7 to check if convergence of

fiber direction values has been achieved within the chosen

level of tolerance of relative error.

The circumferential stress around the hole is tensile

at the net-section and compressive at the horizontal center-

line of the plate. The circumferential stress changes from

tension to compression around the hole edge when proceeding

from the net-section to the horizontal centerline of the

plate. There is a point on the circumference of the hole

where the circumferential stress equals zero. The hole edge

is traction free so that all of the stresses equal zero at

that point.

hole edge.

at the

That point is called the isotropic point at the

All directions are principal stress directions

isotropic point so the fiber direction at that point
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was chosen to be consistent with the fiber directions of

adjacent elements.

Elastic Material Properties

The elastic material properties for a lamina considered

in this study were

E I : 19.885 s 106 psi E 2 = 1.281 x lOS psi

Nul2 = 0.298 G12 = 1.003 , lOS psi

and the lamina thickness waschosen to be 0.005 in.

These elastic material properties were chosen to repre-

sent closely the commercial material AS4/3501. Relations

from micromechanics based on the rule-of-mixtures were used

to determine the elastic material properties. The relations

are given by

E l : vfEfl + vmE m (3.8a)

E z = (I + v_ )/(I/El2 + v_ /E m) (3.8b)

NUlz = vfNuf + VmNU m (3.8c)

G12 = (i + v_z)/(i/G _ + v_2/Sm) (3.8d)

where the parameters in equations 3.9a-d are defined as:

v_ = 0.65 fiber volume fraction

v m = 0.35 matrix volume fraction

Nu_ = 0.27 fiber Poisson's ratio

Nu m = 0.35 matrix Poisson's ratio

v_ = 0.269 reduced matrix/fiber volume

ratio for E z

v_2 = 0.162 reduced matrix/fiber volume
ratio for G

12
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E B

G_

G m

See Tsai

: 30.32 . lOS psi

: 2.248 z 105 psi

fiber elastic modulus in fiber

direction

fiber elastic modulus perpen-

dicular to fibers in the plane

of the lamina

: 493 x 103 psi matrix elastic modulus

: 3.683 z 105 psi fiber elastic shear modulus

: !82.59 . 103 psi matrix elastic shear modulus

[4], pages ii_2 thru ii-II for a detailed discus-

sion of these relations.

Failure Strength Theories

Two failure strength theories were used

to predict the failure load in a laminate.

noninteracting strain-based

strain failure criterion and

stress-based criterion called the

criterion.

in this study

The first is a

criterion called the maximum

the second is an interacting

Tsai-Wu tensor polynomial

Maximum Strain Criterion

According to the maximum strain criterion, five para-

meters are used to determine how failure occurs in a lami-

nate. These parameters are the failure strains for the ma-

terial used. The notation is as follows:

EIT : Tensile failure in fiber direction

: Compression failure in fiber direction

: Tensile failure perpendicular to fiber

: Compression failure perpendicular to fiber
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F[2 : In-plane shear failure

The five strains constitute five failure modes and are

assumed to be independent from one another. The strength

ratio R is determined by dividing the failure strain by the

actual strain due to the applied load. There are five

strength ratios, one for each mode of failure.

RIT = 16_T/EII => _Used when 61 > 0 (3.9a)

R1c = ]E_c/Etl => Used when 6 t < 0 (3.9b)

R2T = IE_T/Ezl => Used when 62 > 0 (3.9c)

R2c = [6_c/Ezl => Used when 62 < 0 (3.9d)

R12 = IF_2/Ft21 (3.9e)

where RIT is the tensile strength ratio in the fiber direc-

tion, R1c is the compressive strength ratio in the fiber di-

rection, R2T is the tensile strength ratio perpendicular to

the fibers, R2c is the compressive strength ratio perpendic-

ular to the fibers, and Rl2 is the shear strength ratio.

For a given level of applied load, the strength ratio R

which has the lowest magnitude among the five possibilities

indicates the mode of failure for the layer in the laminate.

Tsai-Wu Criterion

The Tsai-Wu criterion takes into account that modes of

failure can be coupled and interact with one another. There

are six strength parameters associated with the Tsai-Wu cri-

Fy , Fy, * isterion. These are Fxx, y F x, Fss, and F_y. Fxy

treated as an empirical constant and has a normalized value
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of (-0.5).

The strength to stress

quadratic equation:

-b ± (b2 + 4a)½
R =

2a

The values of a and b are determined from:

a : F**a_ - 2F_y(F,_Fyy)_cla 2 + Fyyc_

b : Fx_ I + Fy_ z

The stress values are stresses due to the

the strength parameters depend upon the material used.

Table 3.1

strain criterion

criterion.

ratio R is determined from the

(3.10)

+ F,,T_2 (3.11a)

(3.11b)

applied load and

lists the failure strains for the maximum

and the failure stresses for the Tsai-Wu

Table 3.1

Failure Mode

Failure Strains And Failure Stresses

Tensile failure in fiber direction

Compression failure in fiber direction

Tensile failure perpendicular to fiber

Compression failure perpendicular to fiber

In-Plane shear failure

Strain Stress

(10-3) (103 psi)

10.49 209.82

10.49 209.82

5.77 7.54

22.99 29.87

13.10 13.49

Application of the two failure strength theories to

predict the failure load and failure mode of a thin laminat-

ed fiber-reinforced plate will be discussed in Chapter V.
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CHAPTER IV

PROBLEM FORMULATION AND METHOD OF ANALYSIS

FOR BUCKLING RESPONSE

Equations Governing Buckling Response

The equations which

plate subjected to in-plane

derived in this chapter.

buckling equations is the

which the middle surface displacements are given by

govern buckling of a thin flat

loading only (q(x,y) : O) are

The method used to derive the

adjacent-equilibrium criterion in

u0 = _0 + 6u_ (4.1a)

vO = _0 + Ev_ (4.1b)

wO = &0 + 6w_ (4.1c)

where (u0,v0,w °) and (_0,_0,_0) are equilibrium configura-

tions, E is a small parameter, and (u_,v_,w_) are arbitrari-

ly small incremental displacements. The thin flat plate

considered here is subjected to in-plane edge loading only

so w0 and its derivatives equal zero. (Brush and Almroth

[5_, pp. 90-91). With that condition, equations 4.[a-c

become

uO = +

vO : +

w 0 : EW_

The equilibrium equations were derived in Chapter II.

equations, for the case

q(x,y) equals zero, are

(4.2a)

(4.2b)

(4.2c)

These

where the normal load distribution
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{vO + _(wo )z}[Al_{U?x+ _(,?.)2} + A_z .7 ,y

{uo + vo+ .o.o}] ,,+ AI6 , y ,

+ l-A,,(uO.+_(.o),} . A2,_vo. ,_(.o )2},Y

+ Ase(uo+ vo + .o .o }],x y yX _
: 0 (4.3)

(uO + _(wo )z} + A z {vO + _(wo )z}AI6 ,x ,x 6 ,y ,y

, A6_{h?+ vO, .o ,o }] ,,,X ,y

+ -.Az6_u° + vo + ,o ,o -J_l,y ,X ,, ,y ,y
: 0 (4.4)

[Alt{uOx+ _(wo=)2} ÷ A12{v?y

+ A,,{u?,+ vo÷ .o .o }] .o• ,y ,XX

÷ A.._u?,÷vo÷ .o.o}] .o

+ A_,{uO+ vO+ .o.o}] .o,Y , ,YY

Dllwo + D t wO + 2 D_ wO ],xx,xx 2 ,yy 6 ,xy

2 [D16wO + D 2 wO,,, 6 ,yy + 2 DsswO ],xy ,,y

D I w 0 + D22W?yy2 j,X
: 0 (4 .5)+ 2 D26w°xy],yy. J

Substituting equations 4.2a-c into equations 4.3, 4.4, and

4.5 results in

+ ev? + _=(ew? )'-}[A_,(_?.. _uo,+ _(_w?,,)_-} + A,.{v?, ,y .,

+ _,_{G?_+ _u?, y+ vO,.+ _v? , + _=.o , .? , _}] , •
w

+ _(ewO )2} + A {vO, + _v?,_ ,y4- [A I 6 {u? 4- _u?, x , , 26 + _(_W? )2 }

w

+ A66(u,Ox+ EuO y ,X ,X ,,W : 0 (4.6)
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[A16{u?x+ EU_,x+ _(EW_,x)2} + A26{v?y+ 6V_,y+ _(EW_,y_2}

+ Ass{Go y+ _,.,_, y+ vO,,,+ _v_ , ,+ _2.? , ,,wo , y}] , ,,

+ [A,2{6o + _u_ ,,+ _(_W_,x)2} + A
Q

+ A2s{Go. + _u? 7+ vO + _[,? + _2.? ,,w? ,}] = 0 (4.7)

[A1z{Go.+, _u_,.+ _(ew_,.)2} + Axz(;?, + ev_,,+ _(e._,,)2}

+ Axs{Go,y+ _u_,,_ vO.,+_v_..+ E'w?..w_.,}]_w?.._

+ 2[Axs{uO,,+ Eu_,,+ _(6w_,x)2} + Azs{vOy+, 6v_,y+ _(Ew_,y)2}

• + _'-w? w? ,}]_.o+ A66{Go,+ _u_,:,+ v?.+ _?,. , , _,.,

AI2 ,x , , , , ,

[ + 2 D _w_ xy] xxDxx_W_,x, + Dx2_w_,yy I , ,

[D_WO,xx + D + 2 D g6w_ y] yy = 0 (4.8)226W?,yy 2 ,x ,

Grouping equations 4.6, 4.7, and 4.8, by powers of 6 results

in

[AIIU?x + Ai2V?y + Ai6(_/?y + V?x)] , x

+ _ [AI_.u_,.+ A,zv_,y+ A_s(u_,y + v_,x)], x

+ _2[Aix_(W?.x)2 + Al2_(W?,y)2 + Axs(wOx,,wOy)], x

,Y ,Y

+ E [Ax6u_,x+ Az6v_,,+ A66(u_, , + V?,x)],y

+ _-[Axs_(w_,,,) _- + A26_(w_.y) _- + Ass(W_.xW_.y)] .y : 0 (4.9)

u-.FA16u°x + A _026 ,y + A  (Go+ vo)],.

+ 6 [Al6U_.x + A26V_,F + A66(U_,y + )],X ,X

+ _[AI6W=(w_,,)2 + Az6W:(W_,y)2 + A66(W_.xW?.y)].x
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+ A 2 (U°,y ,x ,y

+ _ [A12u_,_+ A22v_,,+ A26(uO y + v_,_)],y

)2 + A26(W_,xW_,y)] ,,
: 0 (4.10)

[A_uO + A, _,o + A (_o + vO )]_?1 ,X % ,y 16 Y ,X ,XX

+ _[A,,u_,,+ A,2v_,,+ A_(u_,, + ,,_,,)]w_,,,

+ E3[.AII_(w[,x) _ + Al2_(w_,y) _- + A_,s(w_,zw_,7.)]w(_,xx

- + A6 (uO,_ + :,o )]w_+ :Z_ [A_ _o + A v°,,6 ,x 26 6 ,x ,xy

+ (u_ + v_ )]w_
+ 2Ez[A,sU_,x + A26v_,y 166 ,y ,x ,xy

+ 2E3[AI_(w[,,)2 + Aza_(w[, ,

+ E [a_ _o + A2 _,o + A (_o + _o_1_ _ y_2 ,x 2 ,Y 26 _

+ ,,? )]_o,,
+ ez[A_u_,,+ Az2v_,,÷ A_s(u_,_ ,x ,

)z + Az_(,;?,,,w'_,_,)]';?,_,_
+ Ha[A_z_(w?,,)% + A_z_(w?,y

+ 2 D_sw°,x,] ,,x
- & [D11w_,xx

] = o- _ [D,2_ + D _,zx 22 ,YY

(4.11)

Referring to equations 4.9, 4.10, and 4.11, the pre-buckling

force resultants for the equilibrium configuration are

+ _o ) (4.12a)

= All ,x 2 ,y _6 x

- + _o ) (4.12b)
+ A26(u°_ ,x

_ : Al _o + A _oZ ,X 22 ,_

- + _o ) (4.12c)
+ A6s(U°y ,x= A _0 + A% _0

_Xy 16 ,X 6 ,_

Referring again to equations 4.9, 4.10, and 4.11, the buck-

ling force and moment resulSants are

+ v_ ) (4.13a)+ A,_(u_,_ ,,

+ v_ ,) (4.13b)+ A2a(u[, y

+ v_,.) (4.13c)
Nxy _ = 6_6u_,x + A26v_,y + Ass(u_,y
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- + 2 D w°,xMxl = [Dliw_,xx + Dl2w_,yy 16 y] (4.14a)

My I = - [Di2w(_,xx+ D22w_,yy+ 2 D26W_,xy ] (4.14b)

Mxy I : - [Di6w_,xx+ D26w_,yy+ 2 D66w0,xy ] (4.14c)

The terms which involve G0 and _0 in equations 4.9 and

4.10 sum to zero in view of equations 2.86 and 2.87, equa-

tions 2.96 and 2.97, and _quations 3.1 and 3.2, all of which

refer to the equilibrium

terms may be eliminated

terms which involve the

configuration. Therefore, those

from equations 4.9 and 4.10. The

incremental displacements in equa-

tions 4.9, 4.10, and 4.11 contain terms which are linear,

quadratic, and cubic in the small parameter E. Since E is

small, terms associated with quadratic and cubic values of E

may be neglected. The terms which remain comprise the buck-

ling equations (having omitted the small parameter E).

+v? )] =[A1_uT,:+A,2v?,.+A_(uT,. ,: ,

+ vT,_) ] = o (4 15)+ [AIBuT,:+ ABGvI,y + Ag6(uT,, .y •

+ vl )] x[A_u?,,,+A2.v?,.+A,.(u_O,,, ," ,

, = 0+ [A_2u?,+ A22v? + A2_(u_,' + vO,:)],y (4.16)

i-At uO + A v °,yI ,, 18 + A

+ 2 [A16u°,z + A26vo ,Y

_(ao,_,+ T,o,,,)].o,x:

+ A66(Go ' + _o,,)]w 7,X,

+
+ A__ vo + AZ (u°,y ,, 1[A_.uO,,< __,, _ + vO _]w0

[DiiwO,xx+ Dlzw(_,Ty+ 2 D16wO,xy ] ,xx

- + 2 D66W?,xy],xy2 [Di6w_...+ D26wT,yl

,YY

, = 0[Di_w!_,xx+ D22wl o yy+ 2 D_6wOi,.y ],yy (4.17)



Substituting equations

4.17 results in

Nxl,z + Nxyl,y = 0

Nxyl,x+ Ny_, T = 0

Mxl,x x + 2 Mxyl,xy + Myl,yy

4.12 to 4.14 into equations 4.15 to

(4.18)

(4.19)

N,w _ , N_ = 0 (4 20)+ ,, + 2 ,, +

Equation 4.20 is uncoupled from equations 4.18 and 4.19.

Equations 4.18 and 4.19 are independent of the pre-buckling

state or equilibrium configuration and are partial differen-

tial equations. Their only solutions are u_ = 0 and v_ = O.

Equation 4.20 is the governing partial differential equation

for buckling analysis and in terms of displacements has been

written previously as equation 4.17. Values of w_, when de-

termined, provide a measure of the amount of buckling. The

laminate extentional stiffness properties Aij and the lami-

nate bending stiffness properties D,j are functions of posi-

tion in x and y in the plane of the plate. Equation 4.17

may not be solved exactly. A finite element code using the

Engineering Analysis Language (EAL) [6] was used to obtain

approximate solutions and numerical results.

Finite Element Model Used In The Engineering Analysis

Language (EAL)

The finite element model used in EAL is formulated us-

ing the assumed stress field - minimum complementary energy

method developed by T. H. H. Pian [7]. The element used is
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a four-node

ment having

Figure 4.1.

The strain energy

combined plate membrane and plate bending ele-

five degrees of freedom per node as shown in

of an element for linear elastic

behavior in terms of the generalized displacements {q} is

U : 1/2 [q][ k ]{q} (4.21)

where [k] is the element stiffness matrix.

The minimum complementary energy is

_c : U - _ u i S idA : minimum (4.22)

where U is the strain energy in terms of the stress compon-

ents, u i are the prescribed boundary displacements, and S_

are components of forces on the boundary. These force com-

ponents are related to stresses directly next to the boun-

dary through Cauchy's formula

= 0. n. (4 23)Si ji _

where nj is the direction cosine of the boundary normal.

The stress distribution is expressed in terms of unde-

termined stress coefficients {B} such that

{0.}T

{_}T =

(_} =

The elements

= [.°'lt 0.22 0'33 "'" ]

L_l S2 _s • • • J

[ P ] (S} (4.24)

of the matrix [ P ] are functions of position.

The stress-strain relations are

(e} : [ N ] (0.} (4.25)

Using equation 4.25, the internal strain energy is

U = 1/2 f_ [a] [ N ] {_} di (4.26)
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Using equation 4.24, equation 4.26 may be expressed as

U : I/2 IS] [ H ] {8} (4.27)

where the matrix [ H ] is

[ H ] = _, [ P ]T[ N ] [ P ] dy (4.28)
J.

The prescribed boundary displacements are

{u} = [ L ] {q} (4.29)

where the terms in the matrix [ L ] are functions of posi-

tion on the boundary and the terms in the vector {q} are the

generalized displacements at the nodes. Since the forces

{S} on the boundary may be expressed in terms of the

stresses {_} as in equation 4.23, these forces may be relat-

ed to the undetermined

equation 4.24 such that

{S} = [ R ] (S}

stress coefficients {8} through

(4.30)

where the terms in the matrix [ R ] are functions of posi-

tion on the boundary.

The total complementary energy given in equation 4.22

may be written as

_c = i/2 [8] [ H ] (S} - [8] [ T ] (q} (4.31)

[ T ] = _ [ R ] [ L ] dA (4.32)where:

The condition to be satisfied in order for the total

complementary energy to be a minimum is that the partial

derivative of the complementary energy with respect to each

of the undetermined stress coefficients _i, (i = 1,2,3 .... )

should be equal to zero. Using equation 4.31 and taking

partial derivatives produces the following result
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[ H ] {S} =

The undetermined

pre-multiplying equation 4.33 by the inverse of [

produces the result

{S} : [ H ]-*[ T ] {q} (4.34)

Substituting equation 4.34 into equation 4.27 results in

U = i/2 {q}r [ T ]iT[ H ]-*[ T ] {q} (4.35)

Comparing equation 4.35 to equation 4.21 provides a relation

with which to determine the stiffness matrix [ k ].

[ k ] = [ T ]T[ H ]-i[ T ] (4.36)

[ T ] {q} (4.33)

stress coefficients {_} may be obtained by

H ] which

of assumed stress coefficients in

excess strain energy and provides a

number of elements,

and number of stiffness matrices,

Increasing the number

effect decreases the

more accurate solution. Increasing the

which increases the size

also leads to an increase in accuracy of the results.

Finite Element Meshes And Boundary Conditions

The finite element meshes for the four geometries con-

sidered in the buckling analysis are depicted in Figures 4.2

In

in each

through 4.5.

identical to

Chapter III.

the same

Each upper right

the one-quarter

other words,

quadrant in these meshes is

plate meshes considered in

the mesh configurations are

chapter. There are 192 elements in each

quadrant with 12 elements placed around the edge of the hole

or 768 elements for the entire plate with 48 elements placed

around the entire edge of the hole. The complete plate con-
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FiEure 4.2

\
Finite Element Mesh For Cas'e

L/W = 2, D/W : 1/6
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Figure 4.3 Finite Element Mesh For Case

L/W = I, D/W : 1/6
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Figure 4.4

!

Finite Element Mesh For Case

L/W : 2, D/W : 1/3
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Figure 4.5 Finite Element Mesh For Case

L/W : i, D/W : 1/3
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figuration of 768 elements is used in the buckling analysis

instead of only a one-quarter plate configuration because

only one buckling analysis per design is required. Four

buckling analyses per design would be required with the one-

quarter plate configuration (one analysis per quadrant).

Four sets of boundary conditions would be required in a one-

quarter plate analysis i_ order to obtain results for all of

the possible buckling modes. The four sets of boundary con-

ditions for the one-quarter plate configuration are symmet-

ric-symmetric, symmetric-antisymmetric, antisymmetric-sym-

metric, and antisymmetric-antisymmetric. The choice was

made to use one set of boundary conditions applicable to the

complete plate in order to obtain results for all of the

possible buckling modes. The boundary conditions imposed

are those for a simply supported plate.

The following two chapters

sile and buckling analyses.

contain the results of the ten-
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CHAPTER V

TENSILE STRENGTHOF THE PLATE DESIGNS

Numerical Results

This chapter presents the results for the uniaxial ten-

sile loading problem. The failure loads and failure modes

of four plate geometrie s are considered. Each geometry is

used in conjunction with four straightline composite layups

and five curvilinear composite layups to form sixteen-layer

laminate designs. Tables 5.1 through 5.4 show the predicted

tensile failure loads for the 36 designs considered. These

tables are arranged according to the plate geometries. The

failure loads shown in Tables 5.1 through 5.4 are based on

the maximum strain criterion and the Tsai-Wu criterion. The

maximum strain criterion is a strain-based noninteracting

criterion and, as such, does not differentiate or account

for possible interactions which may occur between failure

modes. The Tsai-Wu criterion, on the other hand, can ac-

count for interactions among the possible failure modes,

such as an interaction between fiber failure and shear fail-

ure. The maximum strain criterion is used as the primary

criterion to determine the failure mode, and the Tsai-Wu

criterion is used to verify the accuracy of the maximum

strain criterion and to provide additional insight on possi-

ble interactions among failure modes. The legend at the top

of each table defines the notation associated with each
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Maximum Strain Criterion _IIW_IW Tsai-Wu Criterion

Stacking Design

Sequence Number

Design 1 Failure Load: 27600 Ib/in

(±45/0/90)2s

(Oe) ,

(C8),

( 0/C7) ,

(±45/C6) ,

(Oz/C6) ,

(±45/06) ,

(±45/02)2,

(±45/Cz)z,

1

2

3

4

5

6

7

8

9

0.5

1.00

0.99

0.83
0.67

1.26

i.i0

1.43

I.II

1.29

1.32

1.47

1.52

2.29

i .94

1.84

1.91

2.09
1.93

1.0 1.5 2.0 2.5

Failure Load ( Normalized By Design 1 )

( Maximum Strain Criterion )

Table 5.1 Normalized Tensile Failure Load

Case: L : 20 in., W : I0 in., D/W = i/6
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Maximum Strain Criterion E_ Tsai-Wu Criterion

Stacking Design Design I Failure Load: 26400 ib/in

Sequence Number

(±45/0/90)z, 1

( 08) , 2

(Cs) , 3

(0/C7) , 4

(±45/C6) " 5

(Oz/C6) " 6

(±45/0s) , 7

(±45/Oz)z, 8

(±45/Cz)z, 9

1.00
0.99

0.76
0.62

¢

1.18

1.04

1.38

1.07

1.26
1.29

1.44

1.49

1.79

1.85

2.21

1.87

2.03

1.87

0.5 1.0

Failure Load

1.5 2.0 2.5

( Normalized By Design 1 )

( Maximum Strain Criterion )

Table 5.2 Normalized Tensile Failure Load

Case: L : i0 in., W = I0 in., D/W = I/6
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_ Maximum Strain Criterion

Stacking Design

Sequence Number

(±45/0/90)2s I

2
(08),

3
( Cs),

(0/C7)" 4

_III_I_ Tsai-Wu Criterion

Design i Failure Load: 24100 ib/in

1.00

0.99

0.68
0.59

1.28

i. Ii

2.04

I .92

(±45/C_)g 5

(02/Cs) " 6

(±45/06) " 7

(±45/0z)2, 8

(±45/Cz)z, 9

0.5 i .0

Failure Load

I .71

1.77

1.90

i .76

1.38

1.06

1.28

1.31

1.42

I. 47

( Normalized By Design 1 )

( Maximum Strain Criterion )

Table 5.3 Normalized Tensile Failure Load

Case: L : 20 in., W = i0 in.. D/W = i/3
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Maximum Strain Criterion _III_ Tsai-Wu Criterion

Stacking Design Design 1 Failure Load: 20400 ib/in

Sequence Number

(±45/0/90)z,

( 08),

(Cs) .

( 0/C7) ,

(±45/Cs) .

( Oz/C6) ,

(±45/06) s

(±45/02)z,

(±45/Cz)z,

1

2

3

4

5

6

7

8

9

0.0

1.00
0.99

0.59

0.51

1.01

0.93

1.60
1.66

i .27

0.94

1.20

1.22

1.33
1.38

i .79
I .66

1.89

1.78

0.5 1.0 1.5 2.0

Failure Load ( Normalized By Design 1 )

( Maximum Strain Criterion )

Table 5.4 Normalized Tensile Failure Load

Case: L = I0 in., W = i0 in., D/W = I/3
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table. In each table, the failure loads of each design

(stacking sequence) are normalized by the failure load of

the straightline quasl-isotropic design (Design i) for that

particular geometry based on the maximum strain criterion.

Quasi-isotropic laminates

vative, current day design

if the normalized failure

represent a conventional, conser-

philosophy. For each geometry,

load for a particular design is

less than 1.00, that design is not as capable of supporting

a load as the quasi-isotropic design. Conversely, if the

normalized failure load is greater than 1.00, that particu-

lar design is predicted to support a higher load at failure

than the quasi-isotropic design.

Table 5.1 shows the results for plates with parameters

L/W = 2 and D/W : i/6. These plates are rectangular and the

actual plate dimensions are L = 20 in., W = I0 in., and D =

1.667 in. (length, width, and hole diameter). The maximum

strain criterion predicts that the Design 1 laminate will

experience fiber failure in the 00 layers at the net-section

hole edge at a load of 27600 ib/in. The Tsai-Wu criterion

predicts the same result at virtually the same failure load.

Considering Design 2 next, the unidirectional fiber

format laminate (08), is one that comes to mind when think-

ing about using fibers most effectively, i.e.,aligned with

the load direction. However, Design 2 experiences shear

failure in the matrix, at the hole, near the neZ-section, at

a load 17% below that of quasi-isotropic Design i. This
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failure results in a crack which runs parallel to the fibers

from the net-section hole edge to the ends of the plate.

Shear occurs because of the rapid change in the direction of

stress as the load is transmitted around the hole. In order

to accomodate the hole, the uniform load on the ends of the

plate necessarily must become nonuniform as the hole is ap-

proached. This generates gradients in one stress component

that in turn produces gradients in the other stress compon-

ents. Since there are no shear stresses at the ends of the

plate, shear stresses are generated when approaching the

hole. Since a unidirectional fiber format is very weak in

shear, this laminate is design-limited in shear. The Tsai-

Wu criterion predicts the same result at a failure load 33%

lower than that of Design i.

The choice of a curvilinear fiber format and the stack-

ing sequence (C8), for Design 3, where the fibers are align-

ed with the principal stress directions at every point in

the plate, is a logical progression to overcome the inherent

problems of Design 2 which led to shear failure. Herein "C"

is used to denote curvilinear layers. As a result, no shear

stress can occur in the principal material directions. The

maximum strain criterion predicts that Design 3 is 26%

stronger than Design i (quasi-isotropic) and 43% stronger

than Design 2 (unidirectional). Failure of the laminate of

Design 3 is traced to the relative weakness of th_ matrix in

the direction transverse to the fibers. Design 3 fails due
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to strain elongation in the fiber direction generating con-

traction strains in the transverse direction at the net-sec-

tion near the hole edge (Poisson ratio effect). The materi-

al simply separates perpendicular to the fiber direction.

The Tsai-Wu failure criterion predicts the same result at a

failure load 10% greater than that of Design i.

Again, a logical progression in choice of stacking se-

quence, to overcome the inherent problems encountered with

Design 3, is that of Design 4, a (O/C7)s laminate, and

Design 6, a (02/C8)s laminate, where the "0" denotes

orthogonal. In Design 4, the fibers in the two "0" layers

are aligned orthogonally everywhere to the 14 load-bearing

curvilinear layers to prevent failure of the material

perpendicular to the fiber direction. Similarly, in Design

6 the fibers in the four "0" layers are aligned orthogonally

everywhere to the 12 load-bearing curvilinear layers to

alleviate failure of the material perpendicular to the fi-

bers at the net-section away from the hole edge. The failure

mechanism for Design 4 and Design 6 is fiber failure in the

curvilinear layers at the net-section near the hole edge.

Design 4 supports the highest fiber direction tensile stress

in the curvilinear layers among the designs considered, and

shows that two orthogonal layers are all that is necessary

to eliminate failure of the material perpendicular to the

fibers. The maximum strain criterion predicts that Design 4

is 129% stronger and Design 6 is 109% stronger than Design
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I. This is a dramatic increase in strength. The Tsai-Wu

criterion also predicts about a factor of 2 strength in-

crease relative to Design I. Unfortunately, any attempt to

fabricate an orthogonal grid of fibers would probably result

in less than perfect orthogonal alignment relative to the

curvilinear fibers. If the alignment was less than perfect

shear stresses would he,introduced which would lead to mat-

rix failure. Even if the orthogonal alignment was perfect,

if the load was other than pure axial loading (i.e., a shear

component was present), shear stresses would be generated

within the laminate and this would lead to laminate failure

due to shear. Otherwise, Design 4 and Design 6 are excell-

ent designs for the case of pure axial load.

The choice of a more practical design, especially for

easier fabrication

tion of shear, is

which includes 12

Design 7, a

which includes

and to anticipate inadvertent introduc-

that of Design 5, a (±45/C6), laminate,

load-bearing curvilinear fiber layers.

(±45/06)s laminate, is a comparable laminate

12 load-bearing straightline fiber layers

instead of 12 curvilinear layers. Both designs include 4

straightline fiber layers at ±450 (two positive and two neg-

ative to maintain symmetry) which provide the desired resis-

tance to shear. These layers also help carry axial load.

Use of the ±450 layers effectively eliminates the problem of

shear failure in the matrix. The iteration scheme, discuss-

ed in Chapter III. is used to determine the necessary fiber
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orientation of the curvilinear layers to maintain fiber

alignment in the principal stress direction. It is impor-

tant to note that the directions of the curvilinear fibers

at a given point in the (±45/Cs), laminate are not the same

as the directions of the curvilinear fibers in the (Cs),

laminate, even though the notation

cases. _.

"C" is used in both

The maximum strain criterion predicts that Design 5 is

84% stronger than Design i, that Design 7 is 43% stronger

than Design I, and that Design 5 with its curvilinear fiber

format has a distinct margin of strength over Design 7 with

its straightline fiber format. Failure for Design 5 occurs

in the curvilinear layers, and for Design 7 occurs in the 00

layers, with fiber failure at the net-section near the hole

edge as the mechanism for both designs. The Tsai-Wu criter-

ion predicts the same failure mode for both designs, and

predicts a 91% strength increase for Design 5, and an 11%

strength increase for Design 7, both relative to Design i.

Moreover, for Design 7, the Tsai-Wu criterion indicates

interaction between shear failure and fiber failure, with

fiber failure controlling the response at the hole near the

net-section. This interaction may account for the increased

difference in strength (91% versus [1%) between Design 5

(curvilinear) and Design 7 (straightline). Also, a possible

difference is that the transmission of the load around the

hole through the net-section is accomplished differently
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with the curvilinear fiber format than with the straightline

fiber format. This will be discussed in more detail later

in this chapter.

Care should be exercised not to make comparisons among

the various designs based on factors which may be too narrow

and restrictive. All of the designs were kept constant with

respect to weight by maintaining each design as 16 layer

laminates. Strength as the only factor to be considered in

making a best design choice would be too narrow. Based on

the maximum strain criterion, if Design 6 was to be chosen

over Design 5 because of its 25% strength margin, the dis-

advantages associated with possible shear load introduction

would have been ignored. As can be seen from Table 5.1,

comparisons based on the Tsai-Wu criterion would lead to the

same conclusions. However, according to the Tsai-Wu criter-

ion, possible interactions between fiber failure and shear

failure favors Design 5.

Finally, considering Design 8, a (±45/02)2s laminate,

and Design 9, a (±45/Cz)2s laminate, both criteria predict

that the curvilinear fiber format will have a greater load

capacity than the straightline fiber format. Design 8 and

Design 9 have more ±450 layers, at the expense of less 00 or

less curvilinear load-bearing layers than Designs 4-7. For

Design 8, the failure mode is predicted to be fiber failure

at the net-section near the hole edge in the 00 layers.

According to the maximum strain criterion, Design 8, with
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less 00 load-bearing layers, has a lower failure load margin

than Design 7, 29% versus 43%, relative to Design i, the

baseline quasi-isotropic laminate. However, the Tsai-Wu

criterion indicates interaction between fiber failure and

shear failure and predicts that Design 8 will have a higher

failure load margin than Design 7 (32% versus 11%). Any in-

dication of possible interaction should not be dismissed

lightly.

For Design 9, the failure mode is predicted to be fiber

failure at the net-section, near the hole edge, in the curv-

ilinear layers. The maximum strain criterion predicts a

strength increase of 47% for Design 9 relative to Design I,

and a failure load margin of 18% over Design 8, a straight-

line design. The Tsai-Wu criterion predicts that Design 9

is 52% stronger than Design 1 and 20% stronger than Design

8. This agrees with the

for Design 5 and Design

format has superior load

straightline fiber format.

comparison and trend established

7, where the curvilinear fiber

capacity over the similar design

As is the case for Design 5 and

near the hole edge,

layer orientation,

tical. However, as

Design 7, with Design 8 and Design 9, at the net-section

the failure mechanism (fiber failure),

and fiber alignment are virtually iden-

mentioned above, the curvilinear fiber

format seems to be able to transmit a higher load around the

hole and through the net-section than the straightline fiber

format can.
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Table 5.2 shows the results for plates with parameters

L/W = 1 and D/W = 1/6, namely, square plates. The actual

plate dimensions are L = i0 in., W = I0 in., and D : 1.667

in. (length, width, and hole diameter). For this geometry,

the quasl-isotropic design (Design i) failure load determin-

ed by the maximum strain criterion is used as a baseline

value with which to normalize and compare the failure loads

of the other designs, including the failure loads predicted

by the Tsai-Wu failure criterion. As shown in Table 5.1 for

the rectangular plate, the same favorable results for the

curvilinear designs relative to the straightline designs

were obtained for the square plate geometry. For example,

as seen in Table 5.2, the Design 5 square laminate, a

(±45/CG),, has a normalized failure load of 1.79 relative to

the D_sign 1 laminate, compared to 1.84 for the rectangular

laminate, and fiber failure is predicted to occur in the

curvilinear layers at the net-section near the hole edge,

the problem of shear failure in the matrix being eliminated.

The square straightline laminate Design 7, a (t45/06)s, has

a normalized failure load of 1.38, compared to 1.43 for the

rectangular laminate, and

occur in the 0o layers at

edge. Interaction between

fiber failure is predicted to

the net-section near the hole

shear failure and fiber failure

causes fiber failure in this laminate at a load 41% below

that of the curvilinear laminate Design 5.

Tables 5.3 and 5.4, which consider rectangular and
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square plates with holes twice as large as the other two

cases, continue the pattern established in Tables 5.1 and

5.2. The results show clearly that the curvilinear designs

are stronger, having higher tensile load capacities relative

to the straightline designs. Like the other plate geome-

tries, each curvilinear design exhibits the same relative

improvement over its s%raightline counterpart. Table 5.3

shows the results for plates with parameters L/W = 2 and D/W

= 1/3. The actual plate dimensions are L = 20 in., W = 10

in., and D = 3.333 in. (length, width, and hole diameter).

Failure loads are normalized by that of the quasi-isotropic

Design i laminate. Table 5.4 shows the results for plates

with parameters L/W = 1 and D/W = 1/3. The actual plate

dimensions are L = i0 in., W = i0 in., and D = 3.333 in.

(length, width, and hole diameter). Failure loads are nor-

malized by that of the quasi-isotropic Design i laminate.

An increase in failure load for the curvilinear designs over

the straightline designs is realized for all plate geometric

configurations.

It is important to note that even though the strengths

of the curvilinear designs relative to the straightline de-

signs were basically the same for all four plate geometries

considered, the absolute strengths of the various geome-

tries, both straightline and curvilinear, are a function of

plate geometry. Table 5.5 shows the failure load of all de-

signs normalized by a single failure load, namely the fail-
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Table 5.5

Normalized Tensile Failure Load (Geometry Comparison)1

Stacking Design L/W = 2 L/W = i L/W = 2 L/W = 1
Sequence Number

D/W = 1/6 D/W = 1/6 D/W = 1/3 D/W = 1/3

(±45/0/90)2s 1 1.00 0.96 0.88 0.74

(0.99) (0.95) (0.87) (0.73)

( 08) j 2 0.83" 0.72 0.59 0.43
(0.67) (0.59) (0.52) (0.38)

(C8) s 3 1.26 1.13 1.13 0.75

(i.10) (I.00) (0.98) (0.69)

(0/C7) s 4 2.29 2.11 1.79 1.40

(1.94) (1.79) (1.68) (1.32)

(±45/C6) s 5 1.84 1.71 1.50 1.18

(1.91) (1.77) (1.55) (1.23)

(02/C6) s 6 2.09 1.94 1.67 1.32
(1.93) (1.79) (1.54) (1.23)

(±45/0s) s 7 1.43 1.32 1.21 0.94
(I.II) (1.03) (0.93) (0.70)

(±45/02)2s 8 1.29 1.21 1.12 0.89
(1.32) (1.24) (1.15) (0.90)

(±45/C2)2s 9 1.47 1.38 1.25 0.99

(1.52) (1.43) (1.29) (1.02)

I Normalized by Design 1 failure load (maximum strain cri-

terion), L/W = 2, D/W : 1/6. Failure loads determined by
the Tsai-Wu failure criterion are specified in parentheses.
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ure load of the quasi-isotropic rectangular plate with a

small hole (L/W : 2, D/W : I/6, Design i, Table 5.1) as

predicted by the maximum strain criterion. As can be seen,

the failure loads going from Tables 5.1 to 5.4 decrease for

any given design. For example, if the normalized values of

failure loads for Design 5 (curvilinear fiber format) and

Design 7 (straightline fiber format) are compared progres-

sively from Table 5.1 through 5.4, this statement is seen to

be true. All of the data shown for each geometric configur-

ation in Tables 5.1 through 5.4 is combined in Table 5.5 to

illustrate the influence of geometry on failure load. The

normalized values of the failure loads predicted by applica-

tion of the Tsai-Wu criterion are enclosed in parentheses.

Designs which have the largest tensile load capacities are

realized by laminates with the geometric parameters L/W = 2

and D/W : 1/6. The geometries in order of decreasing ten-

sile load capacity are: L/W : 1 and D/W : i/6_ L/W = 2 and

D/W : i/3_ L/W : I and D/W : i/3.

Iteration Procedure And Convergence Of Fiber Directions

The iteration procedure used to determine the direction

of the fibers in the curvilinear layers for fiber alignment

with the principal stress directions was described in some

detail in Chapter III. In Table 5.6, the fiber directions

in four representative elements for a laminate with a stack-

ing sequence of (±45/C6)s and geometric parameters L/W = i
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Iteration

Table 5.6

Convergence Of Fiber Directionsl

Element 28 Element 81 Element 154 Element 177

1

2

3

4

5

6

7

8

9

I0

ii

12

- 3 74

-12 36

-15 65

-16 91

-17 34

-17 44

-17 41

-17 35

-17 29

-17 23

-17 19

-17 17

-12 60

-41 15

-42 30

-42 93

-42 96

-42 96

-42 96

-42 99

-43 Ol

-43 04

-43 04

-43 06

0 15

1 17

i 95

2 48

2 82

3 04

3 19

3 29

3 36

3 40

3 44

3 46

I Fiber directions are in units of degrees

-049

-169

-234

-270

-289

-299

-305

-308

-309

-310

-310

-311

and D/W : 1/3 are listed as a function of iteration number.

Location of the four elements in the quarter plate is shown

in Figure 5.1. Equation 3.7, page 75, is used as the con-

dition to be satisfied for convergence of the fiber align-

ment angle. An application of equation 3.7 provides results

as shown in Table 5.7 where data from Table 5.6 and itera-

tions ii and 12 are used to check for convergence. As can
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be seen from the table, convergence is quite rapid, and can

actually be achieved within 8 or 7 iterations.

Table 5.7

Relative Error In Current Principal Stress Direction*

Element 28 Element 81 Element 154 Element 177

0.0012 0.0005 0.0058 0.0032

I Tabular values obtained using data of previous iteration

II and current iteration 12 from Table 5.6 and applying

equation 3.7, p. 75. Convergence is assumed as achieved

when the relation given by equation 3.7 is less than 0.01.

The question

could be a matter

well established

Stress Continuity Across Element Boundaries

of the accuracy of the method of analysis

of concern. Finite element methods are

methods for providing numerical results.

The effectiveness of the eight-node isoparametric element in

general applications to satisfy convergence requirements,

compatability, and stress continuity is well established in

the literature. Related

However, in this problem,

fiber orientation varies

possible discontinuities in the stress field.

discussions will not be included.

because of the idealization, the

from element to element, causing

It is there-
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fore logical to ask about the convergence of the results.

The standard approach is to compute results using a finer

mesh and compare the results with those of the established

mesh. If the results from the finer mesh compare well with

the results of the established mesh, theanswers are assumed

to have converged. Here a finer mesh results in less of a

jump in fiber orientation from element to element, and

thereby, perhaps less problems for convergence of the stress

field. To investigate this point, the standard mesh size

density was doubled, from 192 elements to 384 elements in a

quarter plate analysis. The circumferential force resultant

N, around the hole edge was used as a measure of stress

field continuity. The 192 element mesh resulted in 12

elements around the quarter hole, while the 384 element mesh

resulted in 24 elements around the quarter hole. Data for

the laminate design case (±45/C8),, L/W : i, D/W : i/3, were

used for the comparison. In Figure 5.2 the force resultants

for the two meshes are plotted against element position

around the hole given by the angle relative to the x-axis.

The results for the two meshes are virtually superimposed

and show neglible difference in results. The jump in the

force resultant from element to element is evidenced by the

fact that the results are smooth and continuous and is

negligible. Data used to plot the curves of Figure 5.2 are

shown in Table 5.8.
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Table 5.8

Circumferential Force Resultant Data

Laminate Design Case: (±45/C6)s L/W : 1

192 Element Mesh* 384 Element Mesh*

Element N, Element N,
Number (ib/in) Number (ib/in)

D/W : I/3

Angle: 8
(Degrees)

1 - 512.32

17

33

48

65

81

97

113

129

145

161

177

- 482 16

- 410 63

- 280 20

- 54 29

417 13

975 91

1643 O0

2336 73

2946 92

3383 61

3605 42

1 - 514.96

17 - 507.70

33 - 492.50

49 - 467.94

65 - 432.21

81 - 382.92

97 - 317.33

113 - 233.10

128 - 123.38

145 50.16

161 278.15

177 546.82

193 828.37

209 1126.82

225 1463.28

241 1813.34

257 2164.73

273 2502.58

289 2811.98

305 3081.38

321 3301.78

337 3468.43

353 3579.12

369 3634.28

i Data for each element taken at Gauss point 5.

1 875

3 75

5 625

9 375

Ii 25

13 125

16 875

18 75

20 625

24 375

26 25
28 125

31 875

33 75

35 625
39 375
41 25

43 125

46 875

48 75

5O 625

54 375

56 25
58 125
61 875
63 75
65 625
69 375
71 25

73 125
76 875

78 75

80 625

84 375

86 25

88 125
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A further comparison was made by simply examining the

circumferential force resultant for the three sets of ele-

ments bordering the edge of the hole (12 elements on the

boundary, 12 elements next to those boundary elements, and a

third set of 12 elements next to the second set). Essen-

tially these elements form three concentric rings of ele-

ments around a quarter of the hole. Data for the laminate

design case (±45/Cs),, L/W : i, D/W : I/3, were also used

for the comparison. In Figure 5.3 these results for the

three sets of elements are plotted against element position

around the hole given as the angle relative to the x-axis.

The jump in the circumferential force from element to ele-

ment, both circumferentially and radially as shown by the

curves, is minimal, as evidenced by the smoothness of each

curve, and the order among the three curves. Data used to

plot the curves of Figure 5.3 is shown in Table 5.9. It is

clear from the results of using two mesh densities, and from

the smoothness both radially and circumferentially, that the

original 192 element mesh for the quarter plate is suffi-

cient.
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Table 5.9

Circumferential Force Resultant Datal

Laminate Design Case: (±45/C6)s L/W = 1 D/W = 1/3

Element Ns Element Ns Element N,
Number (ib/in) Number (ib/in) Number (ib/in)

1

17

33

49

65

81

97

113

129

145

161

177

- 512 32

- 482 16

- 410 63

- 28O 2O

- 54 29

417 13

975 91

1643 O0

2336 73

2946 92

3383 61

3605 42

2

18

34

50

66

82

98

114

130

146

162

178

- 483 86

- 449 19

- 368 89

- 226 64

15 93

463 80

1025 66

1569 Ol

2174 O0

2735 79

3164 88

3393 46

3

19

35

51

67

83

99

115

131

147

163

179

1 Data for each element taken at Gauss point 5.

454 18

- 415 53

- 328 O0

- 172 O0

123 96

546 98

980 21

1475 45

2023.99

2544.69

2956.41

3183.57
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Influence Of The Curvilinear Fiber Format On The Load

Carrying Capacity

The curvilinear design (±45/CG), and the straightline

design (±45/06), look very similar near the net-section hole

edge. The fibers in the curvilinear layers of the curvilin-

ear design pass by the net-section perpendicular to a line

from the hole edge to the plate edge. For the straightline

design, the fibers in the 00 layers are also perpendicular

to a line from the hole edge to the plate edge. Both de-

signs have ±450 layers with identical orientation at the

net-section hole edge. Locally, near the net-section hole

edge both designs are predicted to have fiber failure at

this point. However, the curvilinear design is able to

carry a much higher tensile load than the straightline

design. Why is this so?

Figures 5.4 and 5.5 are presented in order to provide

insight as to why the curvilinear design has a larger ten-

sile load capacity than the straightline design. Contour

lines of stress in the x-direction are shown in Figure 5.4

for the curvilinear layers in the design (±45/C6)s. Contour

lines of stress in the x-direction are shown in Figure 5.5

for the 00 layers in the design (±45/Os)s. The curvilinear

design has fewer contour lines grouped near the net-section

hole edge, and the contour lines are generally spread far-

ther apart. This behavior indicates a more gradual change

in the stress gradients at the net-section. This can be
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interpreted to mean that the stress concentration is lower

near the net-section hole edge for the curvilinear design

than it is for the straightline design. Figure 5.4 shows

that the stress near the net-section hole edge is approxi-

mately 3750 psi due to a tensile load of 7200 ib for the

curvilinear design. Figure 5.5 shows that the stress near

the net-section hole edge is approximately 4250 psi due to a

load of 7200 ib for the straightline design. The plot of

contour lines in Figure 5.4 indicates that the curvilinear

design carries the load along stress trajectories in a

streamline pattern which flow around the hole.

An even better example of this is shown in the follow-

ing two figures. Figures 5.6 and 5.7 show plots of contour

lines of stress in the x-direction in the curvilinear layers

for the orthogonal curvilinear designs (02/C6), and (O/CT)s.

Here it is clear the orthogonal layers help to move the

stress away from the hole edge, reducing the gradients

around the hole and allowing the load to be transmitted more

smoothly around the hole. Though it is not needed, because

the (O/CT)s laminate is sufficient, the value of doubling

the orthogonal layers is clear.

load away from the hole.

This concludes the chapter

clear that the variable fiber

Those layers help move the

on tensile loading. It is

orientation is beneficial.

The next chapter addresses the influence of these designs on

the buckling loads.
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CHAPTER VI

BUCKLING RESISTANCE OF THE PLATE DESIGNS

Establishment of criteria applicable to the design and

analysis of plates subjected to tensile loads was of primary

concern in the previous chapter. Having considered and com-

pared plate designs which carry tensile loads, it is of in-

terest to determine the buckling resistance of these de-

signs. While it may be possible to design the curvilinear

fiber format to best resist buckling, that is not the intent

here. Here, simply, the tensile load designs were checked

for their resistance to buckling. The buckling analysis was

conducted to determine the extent to which the tensile-load-

designed curvilinear fiber format could influence and per-

haps improve the capacity of the plate to resist buckling.

The plates were subjected to in-plane compression loads

and the critical compression load was determined. The crit-

ical compression load of each plate was defined to be that

load which would cause the plate to buckle into its first

buckling mode shape. Figure 6.1 shows a typical first buck-

ling mode for square plates, and Figure 6.2 shows a typical

first buckling mode for rectangular plates with length to

width ratios of 2.0. For the square plate the buckling mode

is a single half-wave in both directions, while for the rec-

tangular plate there are two half-waves in the lengthwise

direction.
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Tables 6.1 through 6.4 present the critical buckling

loads of 36 different plate designs. There are four differ-

ent geometries, each having the nine stacking sequences con-

sidered in Chapter V. The critical buckling loads of the

nine stacking sequences for each geometry are normalized by

the critical buckling load of the quasi-isotropic design of

each geometry. The buckling analysis results for the square

plates were verified by comparing the results of the {08)s

laminates in Tables 6.2 and 6.4 with the results obtained by

Nemeth [8]. The buckling analysis results for the rectangu-

lar plates in Tables 6.I and 6.3 were verified by running a

test case on a rectangular plate with a hole diameter to

plate width ratio equal to 0.4 with a stacking sequence of

(±458), and then comparing those results with the results

obtained by Nemeth [8]. In both cases the results obtained

in this study agreed very well with the results given in

Reference 8.

The results given in Tables 6.1 through 6.4 show that

the curvilinear fiber format is as good as a straightline

format as regards buckling resistance. Interestingly

enough, none of the designs considered, straightline or

curvilinear, is better than the quasi-isotropic design in

resisting buckling. For example, considering the data of

Table 6.1, the (Os)s design resists only 38% of the buckling

load of the quasi-isotropic design. Allowing the straight

fibers to become curvilinear does little to improve the
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Design 1 Buckling Load:

Stacking Design
Sequence Number

(±45/0/90)2, 1

1615.22 ib,

1.00

(08) a

(Ce) , 3 _ 0.39

(O/C_) e

(±45/C6) e

(02/C6) s

(±45/0g) s 0.95

(±45/02)z8

(±45/Cz)2s 9 _ 1.00

0.0 0.5 1.0 1.5

Buckling Load

( Normalized By Design I

o

2.0

Table 6.1 Critical Buckling Load

Case: L = 20 in., W : i0 in., D/W = i/6
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Design 1 Buckling Load:

Stacking Design
Sequence Number

(±45/0/90)2s 1

1443.33 lb.

1.00

( 08) "

( C8).,

( 0/C7) s

(±45/C6) s

(02/C6) ,

(±45/0s) "

(±45/02)z,

(±45/C2)z,

0.0 0.5 1.0 1.5

Buckling Load

( Normalized By Design 1 )

2.0

Table 6.2 Critical Buckling Load

Case: L = 10 in., W = I0 in., D/W = 1/6
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Design 1 Buckling Load: 1727.94 lb.

Stacking Design
Sequence Number

(_45/0/90)2, i _ 1.00

(Oa) , 2 _ 0.24

(C8) ,

(O/C?),

(±45/Ce) s

(±45/06) ,

(±45102)2, 8 _ 0.94

Buckling Load

( Normalized By Design 1 )

2.0

Table 6.3 Critical Buckling Load

Case: L : 20 in., W = I0 in.. D/W : 1/3
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Design 1 Buckling Load:

Stacking Design

Sequence Number

1267.71 lb.

(±45/0/90)zs 1 _ 1.00

( Oa) s 2 0.46

(O/Cv) s 4 0.55

(±45/C6) ,

(02/C6) . 6 _ 0.49

(±45/0s) , 7

.
• o

0.0 0.5 1.0 1.5

Buckling Load

( Normalized By Design I )

2.0

Table 6.4 Critical Buckling Load

Case: L : I0 in., W : i0 in., D/W : I/3
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load. Adding orthogonal layers to make a (O/CT)s laminate

greatly improves the buckling capacity relative to the (Os)s

and the (C8), designs, but it is not as good as the quasi-

isotropic laminate. Adding the ±45o layers to form the

(±45/C6), laminate dramatically improves the buckling resis-

tance, with the ±45o layers having a substantial influence.

The (O2/C6), laminate is very similar to the (O/Cv)s lami-

nate. As a comparison with the (±45/C6), laminate, the

(±45/O6), laminate shows very similar buckling capacity.

Finally, the (±45/O2)2, laminate and the (±45/C2)2s laminate

show similar characteristics and are both as good as the

quasi-isotropic designs. Aside from understanding the

influence of the curvilinear layers, the results in Table

6.I, and similarly, the other three tables, indicate that

the ±45o layers strongly influence buckling resistance.

By examining the four tables it is also clear that

there is a geometric influence on the normalized results.

For example, for the rectangular plate with the small hole

(Table 6.1), the (Cs), laminate has only 39% of the buckling

capacity of its quasi-isotropic counterpart. For a square

plate with the small hole (Table 6.2), the (Cs)s laminate

has 66% the buckling capacity. While this laminate may not

be of practical interest, it does demonstrate the influence

of geometry.

A_ this point the tensile and buckling capacities of

particular plates can be compared to provide insight into
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the overall gains of using the curvilinear fiber format.

The tensile and buckling capacities of several laminates and

the range of geometries are compared in Table 6.5 and Table

6.6. As before, the buckling capacity of the quasi-

isotropic laminate in each case is defined to be unity.

From the table it is clear that the curvilinear design has

an advantage. While the buckling capacity of both the

(±45/06)s laminate and the (±45/C6), laminate are about 5%

less than the buckling capacity of the quasi-isotropic lami-

nate as listed in Table 6.5, and even though both laminates

carry more in tension than the quasi-isotropic plate, the

(±45/C6), laminate is better in tension than the straight-

line counterpart as listed and shown in Table 6.6. With the

buckling loads being the same, the increased capacity of the

curvilinear design makes it superior. Similar comments can

be made regarding the (±45/02)2, laminate and the (±45/C2)2e

laminate.

In summary,

format used in the

it can be said that the curvilinear fiber

curvilinear designs do not degrade the

buckling performance.
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Table 6.5

Critical Buckling Loadl

L/W : 2 L/W : I L/W : 2

D/W = 1/6 D/W = i/6 D/W = I/3

L/W = 1

D/W = 1/3

(±45/0/90)2s 1.0 1.0 1.0 1.0

(±45/06), 0.95 0.93 0.87 0.84

(±45/Cs), 0.96 0.94 0.93 0.87

(±45/O2)2s 1.00 0.98 0.94 0.90

(±45/Cz)2s 1.00 0.99 0.94 0.93

Table 6.6

Tensile Load Capacityl

L/W = 2 L/W = 1 L/W = 2

D/W = 1/6 D/W = 1/6 D/W = 1/3

L/W = 1

D/W = 1/3

(±45/0190)28 1.0 1.0 1.0 1.0

(±45/06)s 1.43 1.38 1.38 1.27

(±45/C6), 1.84 1.79 1.71 1.60

(±45/O2)2, 1.29 1.26 1.28 1.20

(±45/C2)2, 1.47 1.44 1.42 1.33

I Designs are normalized by the quasi-isotropic design for
each geometry
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CHAPTER VII

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Summary

This study has addressed and investigated the issue of

using a curvilinear fiber format to increase the structural

efficiency of layered fiber-reinforced, simply supported,

flat plates with centrally located circular holes. The is-

sue of how to determine the orientation and alignment of the

fibers from point to point in a laminated plate structure,

and how to evaluate the gains and improvement in using the

format, have been addressed.

In-plane tensile loading was applied to two opposing

plate edges and the fiber directions of the curvilinear lay-

ers were determined. Specifically, an iteration scheme and

procedure, in conjunction with a finite element discretiza-

tion of the plate, was formulated and used to determine the

fiber orientation and alignment in some or all of the layers

such that in those layers computed values of the principal

stress directions and the principal material directions co-

incided. Evidence of the convergence of the scheme was also

presented.

In establishing a basis for comparison, a maximum

strain failure criterion and the Tsai-Wu failure criterion

were both applied and used to predict and determine the max-

imum in-plane tensile loads which could be carried and the
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failure modes of the various designs. The Tsai-Wu failure

criterion was applied to support, check and compare the

numerical results obtained with the maximum strain failure

criterion. The Tsai-Wu failure criterion agreed fully and

provided some additional insight on the interactive nature

of some failure mechanisms. Increase in capacity was pre-

dicted by both failure criteria.

Various geometries were examined and results were com-

pared to a quasi-isotropic laminate with a similar geometry.

A quasi-isotropic laminate was chosen as a basis since it

represents a rather conventional and often-used design.

Several idealistic designs were also considered, e.g., a

(O/C?)s laminate, and these were found to show about a fac-

tor of two increase in tensile load capacity. Due to possi-

ble manufacturing difficulties and the inability to resist

shear loading, variants of these ideal designs were also

considered. This involved replacing the orthogonal layers

with ±450 layers. Those laminates have straightline

counterparts which are used in current design philosophy.

Compared to those straightline counterparts, and the quasi-

isotropic basis, the curvilinear designs showed improved

tensile load capacity.

It was found that neither the hole size or the aspect

ratio of the plate had any correlative effect on increasing

the tensile strength of the curvilinear designs over that of

the straightline designs. Numerical results obtained on in-
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plane tensile strength of the curvilinear designs and

straightline designs were highest for the plate parameter

case D/W = I/6 and L/W : 2, followed in descending order by

the cases D/W = 1/6 and L/W = i, D/W = 1/3 and L/W = 2, and

D/W = I/3 and L/W = i. Contour plots of the force resultant

in the x direction indicated that a possible reason for the

improved capacity of the curvilinear design is that the load

path is directed away from the hole edge, with the curvilin-

ear fibers causing the load to "flow" around the hole.

Though tensile capacity is important, compression load

capacity, particularly in the sense of resisting buckling,

is equally important. Thus the designs which evolved for

improving tensile loading were checked with regard to their

resistance to buckling. Again, buckling resistance was com-

pared to a quasi-isotropic basis. Numerical results for

both the curvilinear and straightline designs were obtained

by applying a finite element method in the commercial code

Engineering Analysis Language to establish a basis for com-

paring relative resistance to buckling when the designs un-

der simply supported edge conditions were subjected to uni-

axial compressive loading on two opposing edges. This por-

tion of the study indicated that the curvilinear designs had

little influence on buckling loads compared to their

straightline counterparts. Interestingly enough, no design

was better than the quasi-isotropic design in resisting

buckling, and the presence of ±45 o layers improved the buck-
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ling resistance for all of the designs.

Conclusions

Of primary importance, it is concluded that use of a

curvilinear fiber format improves tensile load capacity and

does not degrade buckling capacity.

Of secondary importance, it is concluded that

i. The iteration scheme for finding fiber orientation

worked well and should work for other structural elements,

e.g., curved panels.

2. In general, the maximum

failure criteria predicted identical load

tension. When there were differences it

prediction of interaction effects with

criterion.

3. The addition of

enhances buckling resistance.

strain and the Tsai-Wu

capacities in

was due to

the Tsai-Wu

and/or presence of ±45o layers

Recommendations - Suggestions For Further Study

A natural departure for further study is to consider

designs which include nonsymmetrical stacking sequences.

The area of interest

designs which use a

loads more efficiently

straightline fiber format.

for coupling effects resulting

would be to determine if laminate

curvilinear fiber format could carry

than similar designs which use a

Stiffness terms which account

in twist due to extension
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would necessarilyforce (or extension due to moments)

increase the complexity of the problem.

Another point of departure for further study would be

concerned with curved plates (cylindrical sections) and

shells subjected to in-plane loads as well as transverse

distributed loads. An area of interest to be investigated

would involve determining whether and when effects of trans-

verse shear forces should be considered rather than be

neglected.

In this study, design of the curvilinear fiber format

laminates was based on the application of an in-plane ten-

sile loading. The fiber directions in the curvilinear layers

were oriented to provide the most efficient resistance for

that type of loading. Buckling resistance of the laminates

was shown to be lower than their levels of tensile strength.

This establishes response to buckling as a critical design

mode and buckling strength as a resistance level which the

laminate must support without failure. Thus, further study

may be beneficial in generating laminate design criteria by

applying in-plane compressive loading to determine whether a

basis could be established to justify that fibers should be

aligned in a specified direction to increase resistance to

buckling and have the design remain capable of satisfying

design requirements for tensile loads.
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Finally, consideration should be given to fabricating

specimens to verify the findings of the study. Baseline

designs, curvilinear designs, and their straightline coun-

terparts should be fabricated and tested in tension and in

compression.
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